TEST: Quotient Spaces NAME:

MATH 3406

March 8, 2022

This is a worksheet about a funny (ha ha) vector space called the quotient space.

Our main background space will be $V=\mathbb{R}^{2}$ or the Euclidean plane. All spaces considered are real spaces, i.e., the field is \mathbb{R}.

Problem 1 Draw a picture of

$$
W=\left\{(x, 2 x) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\}
$$

and show W is a subspace of \mathbb{R}^{2}.

Problem 2 The elements in the quotient space \mathbb{R}^{2} / W look like

$$
\mathbf{x}+W
$$

where \mathbf{x} is a vector in \mathbb{R}^{2}. We want to define vector space operations on

$$
\mathbb{R}^{2} / W=\left\{\mathbf{x}+W: \mathbf{x} \in \mathbb{R}^{2}\right\}
$$

which is called the quotient space of \mathbb{R}^{2} by W or sometimes just \mathbb{R}^{2} "mod" W. This is a little tricky because the " \mathbf{x} " in $\mathbf{x}+W$ is not uniquely determined:
(a) We say $\mathbf{x}+W=\tilde{\mathbf{x}}+W$ if $\mathbf{x}-\tilde{\mathbf{x}} \in W$. Show that if $\mathbf{x}+W=\tilde{\mathbf{x}}+W$ and $\mathbf{y}+W=\tilde{\mathbf{y}}+W$, then

$$
(\mathbf{x}+\mathbf{y})+W=(\mathbf{x}+\tilde{\mathbf{y}})+W=(\tilde{\mathbf{x}}+\mathbf{y})+W=(\tilde{\mathbf{x}}+\tilde{\mathbf{y}})+W .
$$

(b) Show that for each $\mathbf{x}+W \in \mathbb{R}^{2} / W$ there exists a unique element $(x, 0)$ such that $\mathbf{x}+W=(x, 0)+W$. Hint: If $\mathbf{x}=\left(x_{1}, x_{2}\right)$, then what is x in terms of x_{1} and x_{2} ?
(c) Show that for each $\mathbf{x}+W \in \mathbb{R}^{2} / W$ there exists a unique element $(0, y)$ such that $\mathbf{x}+W=(0, y)+W$.
(d) Use part (a) to show

$$
(\mathbf{x}+W)+(\tilde{\mathbf{x}}+W)=(\mathbf{x}+\tilde{\mathbf{x}})+W
$$

gives a well-defined associative and commutative addition on \mathbb{R}^{2} / W.

Problem 3 Find the zero element in \mathbb{R}^{2} / W and find every element $\mathbf{x} \in \mathbb{R}^{2}$ so that $\mathbf{x}+W$ is the zero element in \mathbb{R}^{2} / W.

Problem 4 Show that scaling $c(\mathbf{x}+W)$ defined by $(c \mathbf{x})+W$ is well-defined and associative on \mathbb{R}^{2} / W.

Problem 5 Verify the remaining properties required to make \mathbb{R}^{2} / W a vector space (existence of additive inverses and the distributive properties).

Problem 6 Find a vector space U isomorphic to \mathbb{R}^{2} / W and write down an isomorphism

$$
\phi: \mathbb{R}^{2} / W \rightarrow U
$$

Problem 7 Show that the function $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / W$ by

$$
\pi(\mathbf{x})=\mathbf{x}+W
$$

is linear and surjective. Find $\mathcal{N}(\pi)$.
This function π is called the quotient map.

Problem 8 Find the dimensions of \mathbb{R}^{2} / W and $\mathcal{N}(\pi)$.

Problem 9 An alternative definition of the elements in \mathbb{R}^{2} / W is the following: Each element $\mathbf{x}+W \in \mathbb{R}^{2} / W$ is the set

$$
\mathbf{x}+W=\{\mathbf{x}+\mathbf{w}: \mathbf{w} \in W\}
$$

In terms of this definition $\mathbf{x}+W=\tilde{\mathbf{x}}+W$ means equality as sets.
(a) Show this alternative definition of equality is equivalent to the equality defined in Problem 2 part (a) above.
(b) In terms of this alternative definition, the elements of the quotient sapce \mathbb{R}^{2} / W are sets. Is it true that

$$
A+B=\{\mathbf{a}+\mathbf{b}: \mathbf{a} \in A, \mathbf{b} \in B\}
$$

for $A, B \in \mathbb{R}^{2} / W$?
(c) Draw the elements of \mathbb{R}^{2} / W as subsets of \mathbb{R}^{2}.
(d) Do you see a nice (isomorphic) copy of \mathbb{R}^{2} / W in your picture from part (c)?

Problem 10 Let $L \in \mathcal{L}\left(\mathbb{R}^{2} \rightarrow Z\right)$ where Z is any vector space.
The induced linear map on the quotient is defined to be

$$
\phi: \mathbb{R}^{2} / \mathcal{N}(L) \rightarrow Z \quad \text { by } \quad \phi(\mathbf{x}+\mathcal{N}(L))=L(\mathbf{x}) .
$$

(a) Show ϕ is well-defined and linear.
(b) Show ϕ is injective.
(c) Show $\operatorname{Im}(\phi)=\operatorname{Im}(L)$.
(d) Show $\mathbb{R}^{2} / \mathcal{N}(L)$ is isomorphic to $\operatorname{Im}(L)$.

