TEST: Homogeneity, Additivity, and Linearity corrected

NAME:

\qquad
February 16, 2022

Let V and W be vector spaces over the same field ${ }^{1}$ and consider a function f : $V \rightarrow W$.

Problem 1 Give a precise definition of what it means for f to be additive.

Problem 2 Define a function $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ by

$$
\phi(a+b i, c+d i)=(a+2 b i, 3 c+4 d i) .
$$

(a) If we consider \mathbb{C}^{2} as a complex vector space (as usual) what is the dimension of \mathbb{C}^{2} ?
(b) Show that ϕ is additive.

Problem 3 Give a precise definition of what it means for f to be homogeneous.

Problem 4 Define a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
g(x, y)=\sqrt[3]{x^{3}+y^{3}}
$$

(a) Show that g is homogeneous.

[^0](b) Show that g is additive on every one-dimensional subspace of \mathbb{R}^{2}, but $g(p+q) \neq$ $g(p)+g(q)$ for any nonzero vectors $p, q \in \mathbb{R}^{2}$ not in the same one-dimensional subspace.
Correction: Note that $(1,0)$ and $(0,1)$ are nonzero vectors that are not in the same one-dimensional subspace, but $(1,0)+(0,-1)=(1,-1)$, and
$$
g(1,0)+g(0,-1)=1+(-1)=0=g(1,-1) .
$$

Thus, the claimed assertion is not true. ${ }^{2}$ Can you characterize the pairs of points $((x, y),(z, w)) \in \mathbb{R}^{4}$ (!) for which additivity holds/fails? Something that is "probably" true: If you pick any nonzero point $p=(x, y) \in \mathbb{R}^{2}$, then given any one-dimensional subspace Z distinct from $\operatorname{span}\{(x, y)\}$, there exists a point $q=(z, w) \in W$ for which additivity fails: $g(p+q) \neq g(p)+g(q)$.
(c) Show the function ϕ from Problem 2 is not homogeneous.

Problem 5 Show that if $\operatorname{dim} V=1$ and $f: V \rightarrow W$ is homogeneous, then f is linear.

[^1]
[^0]: ${ }^{1}$ correction

[^1]: ${ }^{2}$ Thanks go to Leo Wang for the counterexample.

