TEST: Homogeneity, Additivity, and Linearity corrected

NAME: _____

February 16, 2022

Let V and W be vector spaces over the same field¹ and consider a function $f: V \to W$.

Problem 1 Give a precise definition of what it means for f to be additive.

Problem 2 Define a function $\phi : \mathbb{C}^2 \to \mathbb{C}^2$ by

 $\phi(a+bi,c+di) = (a+2bi,3c+4di).$

- (a) If we consider \mathbb{C}^2 as a complex vector space (as usual) what is the dimension of \mathbb{C}^2 ?
- (b) Show that ϕ is additive.

Problem 3 Give a precise definition of what it means for f to be homogeneous.

Problem 4 Define a function $g : \mathbb{R}^2 \to \mathbb{R}$ by

$$g(x,y) = \sqrt[3]{x^3 + y^3}.$$

(a) Show that g is homogeneous.

 $^{^{1}}$ correction

(b) Show that g is additive on every one-dimensional subspace of R², but g(p+q) ≠ g(p) + g(q) for any nonzero vectors p, q ∈ R² not in the same one-dimensional subspace.

Correction: Note that (1,0) and (0,1) are nonzero vectors that are not in the same one-dimensional subspace, but (1,0) + (0,-1) = (1,-1), and

$$g(1,0) + g(0,-1) = 1 + (-1) = 0 = g(1,-1).$$

Thus, the claimed assertion is not true.² Can you characterize the pairs of points $((x, y), (z, w)) \in \mathbb{R}^4$ (!) for which additivity holds/fails? Something that is "probably" true: If you pick any nonzero point $p = (x, y) \in \mathbb{R}^2$, then given any one-dimensional subspace Z distinct from span $\{(x, y)\}$, there exists a point $q = (z, w) \in W$ for which additivity fails: $g(p+q) \neq g(p) + g(q)$.

(c) Show the function ϕ from Problem 2 is not homogeneous.

Problem 5 Show that if dim V = 1 and $f : V \to W$ is homogeneous, then f is linear.

²Thanks go to Leo Wang for the counterexample.