TEST: Homogeneity, Additivity, and Linearity

NAME:

February 11, 2022

Let V and W be vector spaces and consider a function $f: V \to W$.

Problem 1 Give a precise definition of what it means for f to be additive.

Problem 2 Define a function $\phi : \mathbb{C}^2 \to \mathbb{C}^2$ by

$$\phi(a + bi, c + di) = (a + 2bi, 3c + 4di).$$

- (a) If we consider \mathbb{C}^2 as a complex vector space (as usual) what is the dimension of \mathbb{C}^2 ?
- (b) Show that ϕ is additive.

Problem 3 Give a precise definition of what it means for f to be homogeneous.

Problem 4 Define a function $g : \mathbb{R}^2 \to \mathbb{R}$ by

$$g(x,y) = \sqrt[3]{x^3 + y^3}.$$

- (a) Show that g is homogeneous.
- (b) Show that g is additive on every one-dimensional subspace of \mathbb{R}^2 , but $g(p+q) \neq g(p) + g(q)$ for any nonzero vectors $p, q \in \mathbb{R}^2$ not in the same one-dimensional subspace.
- (c) Show the function ϕ from Problem 2 is not homogeneous.

Problem 5 Show that if dim V = 1 and $f : V \to W$ is homogeneous, then f is linear.