Final Assignment: Linear Functions Due Tuesday April 28, 2022

John McCuan

April 11, 2022

Problem 1 Do you understand a linear map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with $L(1)=0$?
Solution: Main observation $L x=L(1) x=a x$ where $L(1)=a \in \mathbb{R}$ (is considered as an element in the field \mathbb{R}). In this case, $L x \equiv 0$.

Questionaire

1. $\mathcal{N}(L)=\mathbb{R}^{1}, \operatorname{Im}(L)=\{0\}$.
2. Matrix: $A=0$ or $A=(0)$.
3. Name(s): zero map, null map, trivial map, complete collapse (map), total annihilator.
4. Picture:

Figure 1: Illustration of the zero map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$.
5. $0 x=b$ is exactly solvable only if $b=0$. In the case $b=0$ any $x \in \mathbb{R}^{1}$ is a solution.
If $b \neq 0$, then any $x \in \mathbb{R}^{1}$ may be considered an approximate solution, but no particular $x \in \mathbb{R}^{1}$ is better than any other.
6. The dual map $L^{\prime}: \mathcal{L}\left(\mathbb{R}^{1} \rightarrow \mathbb{R}\right) \rightarrow \mathcal{L}\left(\mathbb{R}^{1} \rightarrow \mathbb{R}\right)$ is given by

$$
L^{\prime} \phi=\psi_{0} \quad \text { where } \quad \psi_{0} \equiv 0
$$

is the zero map. In fact, $\psi_{0}: \mathbb{R}^{1} \rightarrow \mathbb{R}$ with codomain the field \mathbb{R} is essentially identical to $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with codomain the vector space \mathbb{R}^{1} over the field \mathbb{R}. This means L^{\prime} is also a/the zero map.
There is an induced/reverse map $T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ given by $T=\Phi \circ L^{\prime} \circ \Psi^{-1}$ where $\Phi: \mathbb{R}^{1} \rightarrow \mathcal{L}\left(\mathbb{R}^{1} \rightarrow \mathbb{R}\right)$ and $\Psi: \mathbb{R}^{1} \rightarrow \mathcal{L}\left(\mathbb{R}^{1} \rightarrow \mathbb{R}\right)$ are the canonical isomorphism given by

$$
\Phi(a) x=\Psi(a) x=a x
$$

and T is also the zero map, so the alternative/composition equation

$$
T L x=T b \quad \text { is } \quad 0 x=0
$$

which (clearly) has each $x \in \mathbb{R}^{1}$ as a solution.
7. I feel like I understand this zero map pretty well. I can't think of any more interesting questions to ask about it. Can you?

Problem 2 Do you understand a linear map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with $L(1)=1$?
Solution: Main observation $L x=L(1) x=a x$ where $L(1)=a \in \mathbb{R}$ (is considered as an element in the field \mathbb{R}). In this case, $L x \equiv x$.

Questionaire

1. $\mathcal{N}(L)=\{0\}, \operatorname{Im}(L)=\mathbb{R}^{1}$.
2. Matrix: $A=1$ or $A=(1)$.
3. Name(s): identity map, trivial map; this map is an isomorphism.
4. Picture:

Figure 2: Illustration of the identity map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$.
5. $1 x=b$ has the unique solution $x=b$.
6. The dual map $L^{\prime}: \mathcal{L}\left(\mathbb{R}^{1} \rightarrow \mathbb{R}\right) \rightarrow \mathcal{L}\left(\mathbb{R}^{1} \rightarrow \mathbb{R}\right)$ is given by

$$
L^{\prime} \phi=\phi \quad \text { or } \quad L^{\prime}=\mathrm{id}
$$

is the identity map on the dual space $\mathcal{L}\left(\mathbb{R}^{1} \rightarrow \mathbb{R}\right)$.
The induced/reverse map $T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1} T$ is also the identity map on \mathbb{R}^{1}. The alternative/composition equation

$$
T L x=T b \quad \text { is } \quad x=b
$$

which is the same equation with the same unique solution $x=b$.
7. I feel like I understand this map.

Problem 3 Do you understand a linear map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with $0<L(1)<1$?
Problem 4 Do you understand a linear map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with $L(1)>1$?
Problem 5 Do you understand a linear map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with $L(1)=-1$?
Problem 6 Do you understand a linear map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with $-1<L(1)<0$?
Problem 7 Do you understand a linear map $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ with $L(1)<-1$?
Problem 8 Which parts of the questionaiare for Problems 2-4 have essentially the same answer and could this be combined?

Problem 9 Which parts of the questionaiare for Problems 2-4 essentially require the consideration of cases to give a complete answer?

Problem 10 Which parts of the questionaiare for Problems 5-7 have essentially the same answer and could this be combined?

Problem 11 Which parts of the questionaiare for Problems 5-7 essentially require the consideration of cases to give a complete answer?

Problem 12 What is the overall moral of the big classification of linear maps L : $\mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$?

Problem 13 Which linear function $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ deserves to be called the "trivial map?"

Problem 14 Give a big classification for linear functions $L: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}$. (Make some of your own problems for the questionaire.)

Problem 15 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)=0$?
Problem 16 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)=1$?
Problem 17 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $0<L(1)<1$?
Problem 18 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)>1$?
Problem 19 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)=-1$?

Problem 20 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $-1<L(1)<0$?
Problem 21 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)<-1$?
Problem 22 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)=a+b i$ with $a^{2}+b^{2}=1$?

Problem 23 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)=a+b i$ with $a^{2}+b^{2}<1$?

Problem 24 Do you understand a linear map $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ with $L(1)=a+$ bi with $a^{2}+b^{2}>1$?

Problem 25 Give a big classification for linear functions $L: \mathbb{C}^{1} \rightarrow \mathbb{C}^{2}$. (Make some of your own problems for the questionaire.)

Problem 26 Show the conditions (i)-(iv) in classification category \mathbf{B} of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are equivalent.

Problem 27 Verify the equivalence of classification category B2 of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Problem 28 Verify the equivalence of classification category C1b of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Problem 29 Verify the equivalence of classification category C2b of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Problem 30 Verify the equivalence of classification category C3b of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Problem 31 Verify the equivalence of classification category C4b of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Problem 32 Verify the equivalence of classification category C5b of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Problem 33 Verify the equivalence of classification category C6b of The Big Classification for Linear Functions $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Problem 34 Given any linear function $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and any $\mathrm{x} \in \mathbb{R}^{2} \backslash\{0\}$, show there are real constants a_{2}, a_{1}, and a_{0} (not all zero) for which

$$
a_{2} L^{2} \mathbf{x}+a_{1} L \mathbf{x}+a_{0} \mathbf{x}=\mathbf{0}
$$

Several of the problems below are based on this problem, and when the vector \mathbf{x} and the real numbers a_{2}, a_{1} and a_{0} appear below, you can assume they come from this problem and satisfy the condition/equation above.

Problem 35 (See Problem 34) Do you understand a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $a_{2}=a_{0}=0$?

Problem 36 (See Problem 34) Do you understand a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $a_{1}=a_{0}=0$ but $L \mathbf{x} \neq \mathbf{0}$?

Problem 37 (See Problem 34) Do you understand a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $a_{0}=0, a_{1} \neq 0, a_{2} \neq 0$, and $L \mathbf{x} \neq \mathbf{0}$.

Problem 38 (See Problem 34) Are there any other linear maps $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $a_{0}=0$ but none of the conditions considered in Problems 35-37 apply? Do you understand such a linear map (if there is one)?

Problem 39 (See Problem 34) Assume $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map and there is no nonzero vector $\mathbf{w} \in \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ for which $L \mathbf{w}=\mathbf{0}$. What if $a_{2}=0$?

Problem 40 (See Problem 34) Assume $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map and there is no nonzero vector $\mathbf{w} \in \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ for which $L \mathbf{w}=\mathbf{0}$. What if $a_{1}=0$?

Problem 41 (See Problem 34) Assume $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map and there is no nonzero vector $\mathbf{w} \in \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ for which $L \mathbf{w}=\mathbf{0}$. If the polynomial $q(z)=a_{2} z^{2}+a_{1} z+a_{0}$ has a real root x_{0}, then do you understand the linear function L ?

Problem 42 (See Problem 34) Do you understand a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $a_{1}=0$ and $a_{0}<0$?

Problem 43 (See Problem 34) Do you understand a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $a_{1}=0$ and $a_{0}>0$?

Problem 44 (See Problem 34) Do you understand a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if the polynomial $q(z)=a_{2} z^{2}+a_{1} z+a_{0}$ has no real roots and $a_{1} \neq 0$?

