Final Assignment: Linear Functions Due Tuesday April 28, 2022

John McCuan

April 11, 2022

Problem 1 Do you understand a linear map $L : \mathbb{R}^1 \to \mathbb{R}^1$ with L(1) = 0?

Solution: Main observation Lx = L(1)x = ax where $L(1) = a \in \mathbb{R}$ (is considered as an element in the field \mathbb{R}). In this case, $Lx \equiv 0$.

Questionaire

- 1. $\mathcal{N}(L) = \mathbb{R}^1$, $\operatorname{Im}(L) = \{0\}$.
- 2. Matrix: A = 0 or A = (0).
- 3. Name(s): zero map, null map, trivial map, complete collapse (map), total annihilator.
- 4. Picture:

 $x \in \mathbb{R}^1$ L 0

Figure 1: Illustration of the zero map $L : \mathbb{R}^1 \to \mathbb{R}^1$.

5. 0x = b is exactly solvable only if b = 0. In the case b = 0 any $x \in \mathbb{R}^1$ is a solution.

If $b \neq 0$, then any $x \in \mathbb{R}^1$ may be considered an approximate solution, but no particular $x \in \mathbb{R}^1$ is better than any other.

6. The dual map $L' : \mathcal{L}(\mathbb{R}^1 \to \mathbb{R}) \to \mathcal{L}(\mathbb{R}^1 \to \mathbb{R})$ is given by

$$L'\phi = \psi_0$$
 where $\psi_0 \equiv 0$

is the zero map. In fact, $\psi_0 : \mathbb{R}^1 \to \mathbb{R}$ with codomain the field \mathbb{R} is essentially identical to $L : \mathbb{R}^1 \to \mathbb{R}^1$ with codomain the vector space \mathbb{R}^1 over the field \mathbb{R} . This means L' is also a/the zero map.

There is an induced/reverse map $T : \mathbb{R}^1 \to \mathbb{R}^1$ given by $T = \Phi \circ L' \circ \Psi^{-1}$ where $\Phi : \mathbb{R}^1 \to \mathcal{L}(\mathbb{R}^1 \to \mathbb{R})$ and $\Psi : \mathbb{R}^1 \to \mathcal{L}(\mathbb{R}^1 \to \mathbb{R})$ are the canonical isomorphism given by

$$\Phi(a)x = \Psi(a)x = ax,$$

and T is also the zero map, so the alternative/composition equation

$$TLx = Tb$$
 is $0x = 0$

which (clearly) has each $x \in \mathbb{R}^1$ as a solution.

7. I feel like I understand this zero map pretty well. I can't think of any more interesting questions to ask about it. Can you?

Problem 2 Do you understand a linear map $L : \mathbb{R}^1 \to \mathbb{R}^1$ with L(1) = 1?

Solution: Main observation Lx = L(1)x = ax where $L(1) = a \in \mathbb{R}$ (is considered as an element in the field \mathbb{R}). In this case, $Lx \equiv x$.

Questionaire

- 1. $\mathcal{N}(L) = \{0\}, \, \mathrm{Im}(L) = \mathbb{R}^1.$
- 2. Matrix: A = 1 or A = (1).
- 3. Name(s): identity map, trivial map; this map is an isomorphism.
- 4. Picture:

Figure 2: Illustration of the identity map $L : \mathbb{R}^1 \to \mathbb{R}^1$.

- 5. 1x = b has the unique solution x = b.
- 6. The dual map $L' : \mathcal{L}(\mathbb{R}^1 \to \mathbb{R}) \to \mathcal{L}(\mathbb{R}^1 \to \mathbb{R})$ is given by

$$L'\phi = \phi$$
 or $L' = \mathrm{id}$

is the identity map on the dual space $\mathcal{L}(\mathbb{R}^1 \to \mathbb{R})$.

The induced/reverse map $T: \mathbb{R}^1 \to \mathbb{R}^1 T$ is also the identity map on \mathbb{R}^1 . The alternative/composition equation

$$TLx = Tb$$
 is $x = b$

which is the same equation with the same unique solution x = b.

7. I feel like I understand this map.

Problem 3 Do you understand a linear map $L : \mathbb{R}^1 \to \mathbb{R}^1$ with 0 < L(1) < 1?

Problem 4 Do you understand a linear map $L : \mathbb{R}^1 \to \mathbb{R}^1$ with L(1) > 1?

Problem 5 Do you understand a linear map $L : \mathbb{R}^1 \to \mathbb{R}^1$ with L(1) = -1?

Problem 6 Do you understand a linear map $L : \mathbb{R}^1 \to \mathbb{R}^1$ with -1 < L(1) < 0?

Problem 7 Do you understand a linear map $L : \mathbb{R}^1 \to \mathbb{R}^1$ with L(1) < -1?

Problem 8 Which parts of the questionaiare for Problems 2-4 have essentially the same answer and could this be combined?

Problem 9 Which parts of the questionaiare for Problems 2-4 essentially require the consideration of cases to give a complete answer?

Problem 10 Which parts of the questionaiare for Problems 5-7 have essentially the same answer and could this be combined?

Problem 11 Which parts of the questionaiare for Problems 5-7 essentially require the consideration of cases to give a complete answer?

Problem 12 What is the overall moral of the big classification of linear maps $L : \mathbb{R}^1 \to \mathbb{R}^1$?

Problem 13 Which linear function $L : \mathbb{R}^1 \to \mathbb{R}^1$ deserves to be called the "trivial map?"

Problem 14 Give a big classification for linear functions $L : \mathbb{R}^1 \to \mathbb{R}^2$. (Make some of your own problems for the questionaire.)

Problem 15 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) = 0?

Problem 16 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) = 1?

Problem 17 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with 0 < L(1) < 1?

Problem 18 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) > 1?

Problem 19 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) = -1?

Problem 20 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with -1 < L(1) < 0?

Problem 21 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) < -1?

Problem 22 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) = a + bi with $a^2 + b^2 = 1$?

Problem 23 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) = a + bi with $a^2 + b^2 < 1$?

Problem 24 Do you understand a linear map $L : \mathbb{C}^1 \to \mathbb{C}^1$ with L(1) = a + bi with $a^2 + b^2 > 1$?

Problem 25 Give a big classification for linear functions $L : \mathbb{C}^1 \to \mathbb{C}^2$. (Make some of your own problems for the questionaire.)

Problem 26 Show the conditions (i)-(iv) in classification category **B** of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$ are equivalent.

Problem 27 Verify the equivalence of classification category **B2** of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$

Problem 28 Verify the equivalence of classification category C1b of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$

Problem 29 Verify the equivalence of classification category C2b of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$

Problem 30 Verify the equivalence of classification category C3b of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$

Problem 31 Verify the equivalence of classification category C4b of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$

Problem 32 Verify the equivalence of classification category C5b of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$

Problem 33 Verify the equivalence of classification category C6b of The Big Classification for Linear Functions $L : \mathbb{R}^2 \to \mathbb{R}^2$

Problem 34 Given any linear function $L : \mathbb{R}^2 \to \mathbb{R}^2$ and any $\mathbf{x} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$, show there are real constants a_2 , a_1 , and a_0 (not all zero) for which

$$a_2L^2\mathbf{x} + a_1L\mathbf{x} + a_0\mathbf{x} = \mathbf{0}.$$

Several of the problems below are based on this problem, and when the vector \mathbf{x} and the real numbers a_2 , a_1 and a_0 appear below, you can assume they come from this problem and satisfy the condition/equation above.

Problem 35 (See Problem 34) Do you understand a linear map $L : \mathbb{R}^2 \to \mathbb{R}^2$ for which $a_2 = a_0 = 0$?

Problem 36 (See Problem 34) Do you understand a linear map $L : \mathbb{R}^2 \to \mathbb{R}^2$ for which $a_1 = a_0 = 0$ but $L\mathbf{x} \neq \mathbf{0}$?

Problem 37 (See Problem 34) Do you understand a linear map $L : \mathbb{R}^2 \to \mathbb{R}^2$ for which $a_0 = 0$, $a_1 \neq 0$, $a_2 \neq 0$, and $L\mathbf{x} \neq \mathbf{0}$.

Problem 38 (See Problem 34) Are there any other linear maps $L : \mathbb{R}^2 \to \mathbb{R}^2$ for which $a_0 = 0$ but none of the conditions considered in Problems 35-37 apply? Do you understand such a linear map (if there is one)?

Problem 39 (See Problem 34) Assume $L : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map and there is no nonzero vector $\mathbf{w} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$ for which $L\mathbf{w} = \mathbf{0}$. What if $a_2 = 0$?

Problem 40 (See Problem 34) Assume $L : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map and there is no nonzero vector $\mathbf{w} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$ for which $L\mathbf{w} = \mathbf{0}$. What if $a_1 = 0$?

Problem 41 (See Problem 34) Assume $L : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map and there is no nonzero vector $\mathbf{w} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$ for which $L\mathbf{w} = \mathbf{0}$. If the polynomial $q(z) = a_2 z^2 + a_1 z + a_0$ has a real root x_0 , then do you understand the linear function L?

Problem 42 (See Problem 34) Do you understand a linear map $L : \mathbb{R}^2 \to \mathbb{R}^2$ for which $a_1 = 0$ and $a_0 < 0$?

Problem 43 (See Problem 34) Do you understand a linear map $L : \mathbb{R}^2 \to \mathbb{R}^2$ for which $a_1 = 0$ and $a_0 > 0$?

Problem 44 (See Problem 34) Do you understand a linear map $L : \mathbb{R}^2 \to \mathbb{R}^2$ if the polynomial $q(z) = a_2 z^2 + a_1 z + a_0$ has no real roots and $a_1 \neq 0$?