TEST 4: Duality NAME:

MATH 3406

March 31, 2022

Consider $L: \mathbb{R}^3 \to \mathbb{R}^4$ by

$$L\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) = \left(\begin{array}{c} 3x_1\\ 0\\ 0\\ 0 \\ 0 \end{array}\right).$$

Remember Problem 3 from PRETEST 1: Classify all subspaces U of \mathbb{R}^3 such that

$$\mathbb{R}^3 = \mathcal{N}(L) \oplus U.$$

Fix standard bases $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ for \mathbb{R}^3 , $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ for \mathbb{R}^4 , $\{\phi_1, \phi_2, \phi_3\}$ for $(\mathbb{R}^3)'$, and $\{\psi_1, \psi_2, \psi_3, \psi_4\}$ for $(\mathbb{R}^4)'$.

Fix standard isomorphisms $\Phi : \mathbb{R}^3 \to (\mathbb{R}^3)'$ and $\Psi : \mathbb{R}^4 \to (\mathbb{R}^4)'$.

Problem 1 Given a subspace U of \mathbb{R}^3 from Problem 3 of PRETEST 1 and a vector $\mathbf{b} \in \mathbb{R}^4$, find a formula for

$$\left(T\circ L\Big|_{U}\right)^{-1}L\mathbf{b}.$$

Problem 2 Let

$$\mathbf{x} = \left(T \circ L_{\big|_U}\right)^{-1} L\mathbf{b}$$

from Problem 1 above. What is the significance of $L\mathbf{x}$?

Problem 3 Is the subspace Im(T) an example of one of the subspaces U of \mathbb{R}^3 from Problem 3 of PRETEST 1? If so, what is special about this choice of U?