TEST 4: Duality
 NAME:

MATH 3406
March 31, 2022

Consider $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ by

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{1} \\
0 \\
0 \\
0
\end{array}\right) .
$$

Remember Problem 3 from PRETEST 1: Classify all subspaces U of \mathbb{R}^{3} such that

$$
\mathbb{R}^{3}=\mathcal{N}(L) \oplus U .
$$

Fix standard bases $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ for $\mathbb{R}^{3},\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ for $\mathbb{R}^{4},\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ for $\left(\mathbb{R}^{3}\right)^{\prime}$, and $\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}$ for $\left(\mathbb{R}^{4}\right)^{\prime}$.

Fix standard isomorphisms $\Phi: \mathbb{R}^{3} \rightarrow\left(\mathbb{R}^{3}\right)^{\prime}$ and $\Psi: \mathbb{R}^{4} \rightarrow\left(\mathbb{R}^{4}\right)^{\prime}$.
Problem 1 Given a subspace U of \mathbb{R}^{3} from Problem 3 of PRETEST 1 and a vector $\mathbf{b} \in \mathbb{R}^{4}$, find a formula for

$$
\left(\left.T \circ L\right|_{U}\right)^{-1} L \mathbf{b} .
$$

Problem 2 Let

$$
\mathbf{x}=\left(\left.T \circ L\right|_{U}\right)^{-1} L \mathbf{b}
$$

from Problem 1 above. What is the signficance of $L \mathbf{x}$?
Problem 3 Is the subspace $\operatorname{Im}(T)$ an example of one of the subspaces U of \mathbb{R}^{3} from Problem 3 of PRETEST 1? If so, what is special about this choice of U ?

