PRETEST 2: Duality NAME:

MATH 3406

March 29, 2022

Consider $L: \mathbb{R}^3 \to \mathbb{R}^4$ by

$$L\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) = \left(\begin{array}{c} 3x_1\\ 0\\ 0\\ 0 \\ 0 \end{array}\right).$$

Remember Problem 3 from PRETEST 1: Classify all subspaces U of \mathbb{R}^3 such that

$$\mathbb{R}^3 = \mathcal{N}(L) \oplus U.$$

Problem 1 What can you say about

$$L_{\mid_U}: U \to \operatorname{Im}(L)?$$

Problem 2 Fix standard bases $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ for \mathbb{R}^3 and $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ for \mathbb{R}^4 . Find the matrix of L.

Problem 3 Fix standard bases $\{\phi_1, \phi_2, \phi_3\}$ for $(\mathbb{R}^3)'$ and $\{\psi_1, \psi_2, \psi_3, \psi_4\}$ for $(\mathbb{R}^4)'$. Find the matrix of ϕ_j and ψ_k for each j = 1, 2, 3 and k = 1, 2, 3, 4.