PRETEST 2: Duality NAME:

MATH 3406

March 29, 2022

Consider $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ by

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{1} \\
0 \\
0 \\
0
\end{array}\right) .
$$

Remember Problem 3 from PRETEST 1: Classify all subspaces U of \mathbb{R}^{3} such that

$$
\mathbb{R}^{3}=\mathcal{N}(L) \oplus U
$$

Problem 1 What can you say about

$$
\left.L\right|_{U}: U \rightarrow \operatorname{Im}(L) ?
$$

Problem 2 Fix standard bases $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ for \mathbb{R}^{3} and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ for \mathbb{R}^{4}. Find the matrix of L.

Problem 3 Fix standard bases $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ for $\left(\mathbb{R}^{3}\right)^{\prime}$ and $\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}$ for $\left(\mathbb{R}^{4}\right)^{\prime}$. Find the matrix of ϕ_{j} and ψ_{k} for each $j=1,2,3$ and $k=1,2,3,4$.

