
Matthew’s Great Question
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April 4, 2022

Given the construction of a dual map

L′ : W ′ → V ′ by L′ψ = ψ ◦ L

associated with a linear map L : V →W :

Can you give me an example of a dual map, so I can understand what this
construction means?

This is a really good question, and I suggest we consider three examples associated
with the following linear maps.

Example 1 L : R1 → R
2 by

Lx =

(

2x
x

)

.

Example 2 L : R2 → R
3 by

L

(

x1
x2

)

=





2x1
3x2

x1 + 5x2



 .

Example 3 L : R2 → R
3 by

L

(

x1
x2

)

=





6x1 + 10x2
21x1 + 35x2
3x1 + 5x2



 .
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Before I consider the dual maps associated with each of these examples of linear
functions I would like to make some preliminary comments and observations intended
to render the details of the examples easier to appreciate.

First of all, it will be noted that all three examples fall into the class of examples
of linear maps

L : Rn → R
m

with m > n. On the one hand, this will serve to make our considerations more
concrete and (in some sense) easier to understand. There are two significant structures
that our choice of the finite dimensional real Euclidean spaces Rn and R

m as domain
and codomain introduces. Both are quite familiar:

(i) The space R
n has a natural standard basis

{e1, e2, . . . , en}

consisting of the (column) vectors ej ∈ R
n with zero in every entry and a 1 in

the j-th entry. And the similar thing holds for R
m. If we need to distinguish

between ej ∈ R
n and ej ∈ R

m, for example if j = 2, n = 3, and m = 4 we
might wish to distinguish between

e2 =





0
1
0



 ∈ R
3 and e2 =









0
1
0
0









∈ R
4,

we can use the cumbersome superscript notation

eR
n

j and eR
m

j

for the former and the latter respectively.

(ii) The space Rn has a natural inner product and associated inner product struc-
ture.

Both of these features, which are not necessarily present in other vector spaces, are
fairly familiar. The presence of standard basis vectors has as it’s primary consequence
a simplification in the familiar matrix multiplication associated with linear functions
on these spaces. The inner product has some details associated with it which may be
unfamiliar, and these will be considered in some detail below.
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Overall, specific examples in this class of examples allow one to see all the details
of the dual map construction in a concrete setting which perhaps clarifies the abstract
dual mapping. On the other hand, the specific examples involve (and in a certain
sense introduce) a great deal more structure and a good deal more complication along
with that structure.

The examples we have chosen all have m > n. The reason for this is primarily
to illustrate the relation of the dual map construction with the effort to solve (or
otherwise analyze) an equation

Lx = b

where b is a given vector in R
m and x ∈ R

n is considered unknown. This is of
particular interest in the case b /∈ Im(L) so that the equation is not actually solvable,
but the familiar least squares approximation procedure can be considered.

1 Big Picture Part I

We have a linear function L : V → W and we would like to understand L. The
subspaces N (L) in V and Im(L) in W are a good place to start. We know

L∣
∣

N (L)

: N (L)→ {0}.

That is, L sends every vector in the subspace N (L) to the zero vector 0 = 0W in
W . It may not seem like the function L is doing anything interesting on N (L),
but the identification of the set/space where this uninteresting mapping action takes
place. . . is important and interesting.

The next question might be:

What is L doing elsewhere (outside of N ),
and how can we organize/understand that?

We will assume generally in this discussion that V and W are finite dimensional,
though many of the questions we might ask can also be asked when V and/or W
are infinite dimensional. In the finite dimensional case, the fundamental (dimension)
theorem of linear maps is a useful tool:

dim Im(L) = dimV − dimN (L).

In a rough sense there are dim Im(L) “dimensions” of V (or within V ) where the
(nonzero) action of L takes place. Perhaps ideally we would have a subspace Ṽ of
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dimension k = dim Im(L) for which

V = N (L)⊕ Ṽ

and we could say “all the action of L takes place on Ṽ .” In a certain sense

L∣
∣

Ṽ

: Ṽ → Im(L)

isolates the “interesting part of L. You may remember that Axler’s Exercise 3B12
(Problem 8 of Assignment 5) involved finding a subspace with the same properties as
Ṽ in this discussion.

A couple comments are in order:

1. We should not expect the subspace Ṽ to be unique. There may be many
different subspaces Ṽ which capture the nonzero action of L, or more properly
on which exclusively nonzero action of L takes place. In fact, this informal
phrasing might not be completely clear either. Note that if we can identify such
a subspace Ṽ and assuming there is a nontrivial null space N (L), there are still
lots of vectors z + v /∈ Ṽ with z ∈ N (L), v ∈ Ṽ , and

L(z + v) = L(v) 6= 0W .

Thus, there is still a lot of nonzero action off of (or outside of) Ṽ . But Ṽ is
somehow representative of the nonzero action of L. We would expect

L∣
∣

Ṽ

: Ṽ → Im(L)

to be an isomorphism, and indeed it would be since dim Ṽ = dim Im(L), and
this restriction is clearly onto.

2. Rather than thinking the action of L on N (L) is “not interesting,” it is perhaps
better to think of it as just “different.” Perhaps then, for the sake of “diversity,”
let’s just say we are thinking to (at least try to) “split up” V into two parts
V = N (V ) ⊕ Ṽ in such a way that Ṽ is isomorphic to Im(L). Notice that
W\ Im(L) is really sort of out of the picture. Obviously, there should be some
kind of mandated inclusion or affirmative action for W\ Im(L), but until L
decides to pay some attention to this neglected and less fortunate part of W , it
is not clear mathematically what to do.
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Ṽ Im(L)

V W

N (L) {0}

L

LL

L

Figure 1: Splitting up V in order to understand L. All the diagonal arrows are
injections; the top mapping is an isomorphism.

3. Finally, it may be noted that we are still considering a relatively “course” view
of the linear function L. The dimension theorem may be viewed as giving even
“courser” information; it only tells us dimensions. Here we are attempting to
identify a particular subspace on which the (nonzero) action of L takes place.
We are not saying anything specific about the nature of that action aside from
that it constitutes an isomorphism.

If what we have outlined above is an acceptable approach toward understanding
something about the linear function L, then we can think of the dual operator L′ :
W ′ → V ′ as a tool to identify the subspace Ṽ . Recall that V and V ′ are isomorphic,
and W and W ′ are isomorphic as well. These identifications depend again on the fact
that everything is finite dimensional. In a certain sense we would like to start with
Im(L) ⊂W and find an “inverse image” Ṽ ⊂ V . This, of course, is not really possible
unless L is an injection onto its image. Nevertheless, it turns out, we can think of
L′ : W ′ → V ′ as a sort of stand in for an inverse. One nice thing about this approach
is that all of W is brought back into the game. In particular, L′ allows us to define

V W

V ′ W ′

L

Φ Ψ
L′

Figure 2: Using L′ to get back from W into V and identify the subspace Ṽ .

at least some kind of function T : W → V . Let Φ : V → V ′ and Ψ : W → W ′ be
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isomorphisms. Again these isomorphisms are not unique in general,1 and we should
expect this to correspond to the non-uniqueness of Ṽ . Nevertheless, it makes perfectly
good sense to define

T : W → V by T = Φ−1 ◦ L′ ◦Ψ.

Let us come back to these “big picture” considerations after looking at some examples.

2 Examples

Let us start with some general observations about the class of examples L : Rn → R
m.

With the natural choice of basis (the standard unit basis vectors) there is also a
natural choice of isomorphisms Φ : Rn → (Rn)′ and Ψ : Rm → (Rm)′. These are
equivalent to the correspondence(s)

ej = eR
n

j ←→ φj and ej = eR
m

j ←→ ψj

where {φ1, φ2, . . . , φn} is the dual basis for (Rn)′, and {ψ1, ψ2, . . . , ψm} is the dual
basis for (Rm)′. Since an essentially identical situation prevails for the relation be-
tween R

n and the dual space (Rn)′ as with R
m and its dual space (Rm)′, except that

the names of the dual basis elements are different, we will mention certain things only
about R

n and assume the appropriate comments apply without specific mention to
R

m. For example, φj : R
n → R is determined by

φj(ek) = δjk =

{

0, j 6= k
1, j = k,

so that for each v = (v1, v2, . . . , vn)
T ∈ R

n we have2

Φ(v) = Φ

(

n
∑

j=1

vjej

)

=

n
∑

j=1

vjφj .

Also with respect to the standard bases for Rn and R
m, there exists an m×n matrix

A with real entries for which
Lv = Av.

1In particular, the isomorphisms we have constructed between a finite dimensional vectors space

and its dual depend on a choice of basis in the vector space.
2I am using a superscript “T ” here to denote the transpose so that v is a column vector. I am

doing this simply to make the typesetting easier.
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2.1 Least Squares Approximation

Let us recall also the basic outline of least squares approximation. We are given
a vector b ∈ R

m. Since we have assumed m > n, it is very likely that b /∈ Im(L) and
the equation

Lx = Ax = b

has no solution; let us assume this is the case. Then the standard approach to
obtaining an “approximate solution” or “least squares (approximate) solution” is
to take the transpose AT of the matrix A which corresponds to a linear function
T : Rm → R

n by
Tw = ATw

and consider the alternative equation

ATAx = Tb = Atb. (1)

This alternative equation, as it turns out and as we will verify below, is always
consistent or solveable, though possibly not uniquely. In general ATA is an n × n
matrix and the following are equivalent:

(i) There is a unique solution x of the equation (1).

(ii) The matrix ATA is invertible.

(iii) The matrix A has full rank, in this case n.

Of course, we haven’t talked about the rank of a matrix yet, but Axler’s discussion
of duality is designed precisely for this purpose.

Assuming ATA is invertible, then the least squares approximation is given by

x = (ATA)−1ATb. (2)

In this case, the orthogonal projection of b onto Im(L) is also given by

projIm(L)b = A(ATA)−1ATb = b̃. (3)

Thus, we can solve the equation Lx = b̃, and we call the solution the (least squares)
approximate solution of Lx = b. In cases where ATA is not invertible, there is no
really nice formula for the approximate solution nor for the projection. One is reduced
to using something like the QR decomposition which is covered later. Of course, in
practice you can just use Gaussian elimination or something to find all solutions of
(1). In the first two examples mentioned above we have ATA invertible.
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2.2 The Matrices in the Examples

Example 1 To find the matrix corresponding to the linear function L : R1 → R
2

given by Lx = (2x, x)T , we take the image of the standard unit basis vector e1
for R1 and put that image in the column. Thus, in matrix notation the (strange
but) appropriate way to express the value of L is given by

Lx =

(

2
1

)

x.

The image is clearly Im(L) = span{(2, 1)T} ⊂ R
2, and the least squares ap-

proximation technique proceeds as follows:

AT = (2, 1)

so that given w = (w1, w2)
T ∈ R

2 we have

ATw = 2w1 + w2 ∈ R
1.

Also,
ATA = 5,

so the equation alternative to Lx = Ax = b is

ATAx = 5x = b̃ = 2b1 + b2.

Solving this equation, we get

x = (ATA)−1ATb =
1

5
(2b1 + b2).

And finally, we get the projection

projIm(L)b = A(ATA)−1ATb =

(

2
1

)

1

5
(2b1 + b2) =

2b1 + b2
5

(

2
1

)

.

It may be recalled that I had mentioned that the dual map, which we have not
yet considered, is related to the transpose of A and the projection operator. It
may be noticed in this example that ATb = b̃ = 2b1 + b2 gives the dot product
of b with the vector (2, 1)T which is a piece of information which can be used to
find the projection though this particular scalar is not the scalar of the column
in A giving the projection directly. Something more complicated is going on,
which we will discuss below.
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Example 2 The same details and computations for the second example run as fol-
lows: The matrix of L is given in

L

(

v1
v2

)

=





2 0
0 3
1 5





(

v1
v2

)

.

The image is the plane spanned by the (linearly independent) columns of the
matrix

Im(L) =







v1





2
0
1



+ v2





0
3
5



 : v1, v2 ∈ R







.

The least squares approximation technique proceeds as follows:

AT =

(

2 0 1
0 3 5

)

so that given w = (w1, w2, w3)
T ∈ R

3 we have

ATw =

(

2w1 + w3

3w2 + 5w3

)

∈ R
2.

This is the matrix of inner products of w with the columns of A, which may be
viewed as crucial information for finding the projection of w onto Im(L).

ATA =

(

5 5
5 34

)

,

so the equation alternative to Lx = Ax = b is

ATAx =

(

5 5
5 34

)(

x1
x2

)

= b̃ =

(

2b1 + b3
3b2 + 5b3

)

.

Solving this equation, we get

x = (ATA)−1ATb =
1

145

(

34 −5
−5 5

)(

2b1 + b3
3b2 + 5b3

)

.
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The projection is given by

projIm(L)b = A(ATA)−1ATb

=





2 0
0 3
1 5





[

1

145

(

34 −5
−5 5

)(

2b1 + b3
3b2 + 5b3

)]

=
1

145





2(68b1 − 15b2 + 9b2
−6(2b1 − 3b2 − 4b2)
18b1 + 60b2 + 109b3



 .

Example 3 For

A =





6 10
21 35
3 5



 ,

the image is the line spanned by u = (2, 7, 1)T :

Im(L) =







t





2
7
1



 : t ∈ R







.

Notice the first column of A is 3u and the second column of A is 5u, so we can
also write

Im(L) =







3v1





2
7
1



+ 5v2





2
7
1



 : v1, v2 ∈ R







.

The least squares approximation technique proceeds as follows:

AT =

(

6 21 3
10 35 5

)

so that given w = (w1, w2, w3)
T ∈ R

3 we have

ATw =

(

6w1 + 21w2 + 3w3

10w1 + 35w2 + 5w3

)

∈ R
2.

Again, this is the matrix of inner products of w with the columns of A.

ATA =
1

54

(

9 15
15 25

)

,
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so the equation alternative to Lx = Ax = b is

ATAx =
1

54

(

9 15
15 25

)(

x1
x2

)

= b̃ =

(

3(2b1 + 7b2 + b3)
5(2b1 + 7b2 + b3)

)

.

As expected the columns

1

18

(

3
5

)

and
5

54

(

3
5

)

of ATA form a linearly dependent set in R
2; the matrix ATA has no inverse.

Nevertheless, we see the alternative equation can be written as

1

54

(

9 15
15 25

)(

x1
x2

)

=
x1
18

(

3
5

)

+
5x2
54

(

3
5

)

= (2b1 + 7b2 + b3)

(

3
5

)

.

Therefore, any x = (x1, x2)
T ∈ R

2 for which

3x1 + 5x2 = 54(2b1 + 7b2 + b3) (4)

is a solution.

Note that the image of the function T : R3 → R
2 by T (w) = ATw is a particular

line

Im(T ) = span

{(

3
5

)}

=

{

t

(

3
5

)

: t ∈ R

}

in R
2. As b ranges over R

3 the values Tb range over this line. On the other
hand, given a particular b ∈ R

3, there is a unique solution x ∈ R
2 of (4)

satisfying

x = t

(

3
5

)

∈ Im(T ).

Substituting this form of x into (4) we find

34t = 54(2b1 + 7b2 + b3) or t =
27

17
(2b1 + 7b2 + b3),

and the solution

x =
27

17
(2b1 + 7b2 + b3)

(

3
5

)
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is the unique solution x for which

Ax =
27

17
(2b1 + 7b2 + b3)





6 10
21 35
3 5





(

3
5

)

= 54(2b1 + 7b2 + b3)





2
7
1





= projIm(L)b.

2.3 Inner Products

Axler does not discuss inner products until Chapter 6, but we need to know about
them now. Actually, the inner product on a Euclidean space R

n (or Rm) is familiar
as the standard dot product:

x · y = 〈x,y〉 =
n
∑

j=1

xjyj.

The existence of such a function, which abstractly means a symmetric positive
definite bilinear form

〈 · , · 〉 : V × V → R

on a vector space V , allows one to measure angles and orthogonality in particular.
This has several important consequences among which are the following:

(i) Given a subspace U in a vector space V with an inner product the orthogonal
complement

U⊥ = {v ∈ V : 〈v, u〉 = 0 for every u ∈ U}

is always a well-defined subspace.

ii Given an inner product, one can always define a norm by

‖v‖ =
√

〈v, v〉.

(iii) As a consequence of the fact that a norm is positive definite,3 meaning 〈v, v〉 = 0
implies v = 0, it is always the case that orthogonal subspaces, by which we

3We will discuss the abstract definitions of inner product and norm below and their relations.
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mean subspaces U and S in V for which 〈u, s〉 = 0 for every u ∈ U and
s ∈ S, intersect in the zero subspace. This holds for orthogonal complements
in particular:

U ∩ U⊥ = {0}.

As a consequence of this property the sum of orthogonal subspaces is always a
direct sum.

(iv) Given a proper subspace U of a vector space V with an inner product, one can
always write V = U ⊕U⊥ and for each v ∈ V , there exist unique vectors x ∈ U
and y ∈ U⊥ for which v = x+ y.

I think we are in a position to establish the main property of the function T :
R

m → R
n by

Tw = Φ−1 ◦ L′ ◦Ψw

mentioned above.

Theorem 1 Given any vectors v ∈ R
n and w ∈ R

m and using the respective dot
products 〈 · , · 〉Rn and 〈 · , · 〉Rn we have

〈Tw,v〉Rn = 〈w, Lv〉Rm.

This corresponds to the familiar identity ATw · v = w ·Av.
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Proof:

〈Tw,v〉Rn =

〈

Φ−1 ◦ L′ ◦Ψ

(

m
∑

j=1

wje
R
m

j

)

,v

〉

Rn

=

〈

Φ−1 ◦ L′

(

m
∑

j=1

wjψj

)

,v

〉

Rn

=

〈

Φ−1

(

m
∑

j=1

wjψj ◦ L

)

,v

〉

Rn

=

〈

Φ−1

(

m
∑

j=1

n
∑

ℓ=1

wjψj ◦ L(e
R
n

ℓ )φℓ

)

,

n
∑

r=1

vre
R
n

r

〉

Rn

=

〈

m
∑

j=1

wj

n
∑

ℓ=1

ψj ◦ L(e
R
n

ℓ )eR
n

ℓ ,

n
∑

r=1

vre
R
n

r

〉

Rn

=
m
∑

j=1

wj

n
∑

ℓ=1

n
∑

r=1

vrψj ◦ L(e
R
n

ℓ )
〈

eR
n

ℓ , eR
n

r

〉

Rn

=

m
∑

j=1

wj

n
∑

ℓ=1

vℓψj ◦ L(e
R
n

ℓ )

=

m
∑

j=1

wj

n
∑

ℓ=1

vℓψj

(

m
∑

r=1

〈

L(eR
n

ℓ ), eR
m

r

〉

Rm
eR

m

r

)

=
m
∑

j=1

wj

n
∑

ℓ=1

vℓ
〈

L(eR
n

ℓ ), eR
m

j

〉

Rm

=

〈

m
∑

j=1

wje
R
m

j ,

m
∑

r=1

(

n
∑

ℓ=1

vℓ
〈

L(eR
n

ℓ ), eR
m

r

〉

Rm

)

eR
m

r

〉

Rm

=

〈

m
∑

j=1

wje
R
m

j ,

n
∑

ℓ=1

vℓ

m
∑

r=1

〈

L(eR
n

ℓ ), eR
m

r

〉

Rm
eR

m

r

〉

Rm

=

〈

w,

n
∑

ℓ=1

vℓL(e
R
n

ℓ )

〉

Rm

= 〈w, Lv〉Rm. �

14



With the crucial result of Theorem 1 we can identify the image of T :

Theorem 2 Im(T ) = N (L)⊥ and N (T ) = Im(L)⊥.

Proof: Let us consider the second assertion first. If w ∈ N (T ), then Tw = 0Rn , so
for every u ∈ Im(L), there is some x ∈ R

n with Lx = u and

0 = 〈Tw,x〉Rn = 〈w, Lx〉Rm = 〈w,u〉Rm.

Thus, N (T ) ⊂ Im(L)⊥.
To see the reverse inclusion, we assume w ∈ Im(L)⊥. This means for every x ∈ R

n

we have
0 = 〈Lx,w〉Rm = 〈x, Tw〉Rn.

In particular, taking x = Tw, we get

‖Tw‖2
Rn = 〈Tw, Tw〉Rn = 0,

so Tw = 0, and w ∈ N (T ). This establishes the second assertion.
If v ∈ Im(T ), then v = Tw for some w ∈ R

m. Therefore, for any z ∈ N (L) we
have by Theorem 1

〈v, z〉Rn = 〈Tw, z〉Rn = 〈w, Lz〉Rm = 〈w, 0Rm〉Rm = 0.

Therefore, v ∈ N (L)⊥.
It is, generally speaking, rather more difficult to show the reverse inclusion. We’ll

give two proofs. The first is relatively easy, but is strictly appicable to the situation
of finite dimensional vector spaces: We know, so far, that Im(T ) ⊂ N (L)⊥, that is,
the image of T is a subspace of N (L)⊥. But

dim Im(T ) = m− dimN (T )

= m− dim Im(L)⊥

= m− [m− dim Im(L)]

= dim Im(L)

= n− dimN (L)

= dimN (L)⊥.

Thus, since Im(T ) is a subspace of N (L)⊥ with the same dimension as N (L)⊥, the
subspace Im(T ) must be all of the larger space N (L)⊥. Notice we’ve used here also
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the second assertion of the theorem N (T ) = Im(L)⊥ as well as the fact that the
dimension of a subspace U ⊂ V and the dimension of its orthogonal complement U⊥

add up to the dimension V .
Here is a second proof which is rather more difficult but based on techniques which

can be applied in some cases when the vector spaces involved are infinite dimensional
(inner product spaces). Let x ∈ N (L)⊥. Rather than showing x ∈ Im(T ) directly,
we will show

x ∈ Im(T )⊥⊥

the double orthogonal complement. We will then show Im(T )⊥⊥ ⊂ Im(T ).

Lemma 1 Im(T )⊥ ⊂ N (L) ⊂ N (L)⊥⊥.

Proof: If v ∈ Im(T )⊥, then for each w ∈ R
m we have

0 = 〈v, Tw〉Rn = 〈Lv,w〉Rm.

In particular, taking w = Lv, we have

‖Lv‖2
Rm = 〈Lv, Lv〉Rm = 0,

so Lv = 0 and v ∈ N (L).

Note: We have shown something stronger than Im(T )⊥ ⊂ N (L)N (L)⊥⊥. We have
shown Im(T )⊥ ⊂ N (L), and it is a general fact that any vector subspace U in an any
inner product space V satisfies U ⊂ U⊥⊥. In fact, if u ∈ U , then

〈u, v〉 = 0 for every v ∈ U⊥,

but this means precisely that u ∈ (U⊥)⊥ = U⊥⊥. �

Note: It is a general strategy when trying to show an inclusion U ⊂W of subspaces
U and V in an inner product space V to show W⊥ ⊂ U⊥ instead. This is the way I
phrased Lemma 1, but as noted, we have proved something stronger.

Corollary 1 N (L)⊥ ⊂ Im(T )⊥⊥.

Proof: If x ∈ N (L)⊥, then

〈x,v〉Rn = 0 for every v ∈ N (L).

By Lemma 1 we know Im(T )⊥ ⊂ N (L), so

〈x,v〉Rn = 0 for every v ∈ Im(T )⊥.

This is precisely what it means to have x ∈ (Im(T )⊥)⊥ = Im(T )⊥⊥. �

16



Lemma 2 Im(T )⊥⊥ ⊂ Im(T ).

Proof: This is the inclusion that does not always hold. We will again give two proofs.
Both proofs use the fact that Rn and R

m are finite dimensional, but neither use dimen-
sion (or the dimension theorem) directly. The first uses bases: Let {v1,v2, . . . ,vk}
be a basis for Im(T ). Extend this basis to a basis

{v1,v2, . . . ,vk,vk+1, . . . ,vn}

for Rn with each of the vectors vk+1,vk+2, . . . ,vn ∈ Im(T )⊥. It is clear that

span{v1,v2, . . . ,vk} ⊂ Im(T )⊥⊥.

In particular, {v1,v2, . . . ,vk} is a linearly independent set in Im(T )⊥⊥. If {v1,v2, . . . ,vk}
is not a spanning set, we can find some

wk+1 ∈ Im(T )⊥⊥\ span{v1,v2, . . . ,vk}.

We can also extend {v1,v2, . . . ,vk,wk+1} to a basis

{v1,v2, . . . ,vk,wk+1, . . . ,wn}

for Rn. Then we have

wk+1 =
n
∑

j=1

ajvj ,

and

wk+1 −
k+1
∑

j=1

ajvj =
n
∑

j=k+2

vj =
n
∑

j=k+1

bjwj

for some coefficients aj and bj . It follows that

k
∑

j=1

ajvj + (ak+1 + bk+1 − 1)wk+1 +
n
∑

j=k+2

bjwj = 0.

It follows that a1 = a2 = · · · = ak = 0, ak+1 + bk+1 = 1, and bk+2 = · · · = bn = 0.
Returning to the expression for wk+1 in terms of the basis {v1,v2, . . . ,vn, we see

wk+1 =

n
∑

j=k+1

ajvj ∈ Im(T )⊥.
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But then wk+1 ∈ Im(T )⊥ ∩ Im(T )⊥⊥, and consequently,

‖wk+1‖
2 = 〈wk+1,wk+1〉 = 0.

This is a contradiction since we assumed wk+1 /∈ span{v1,v2, . . . ,vk}.
The second proof uses the direct sum decomposition R

n = Im(T )⊕ Im(T )⊥ much
more directly. Let x ∈ Im(T )⊥⊥, then we can write

x = y + z with y ∈ Im(T ) and z ∈ Im(T )⊥.

Since Im(T ) ⊂ Im(T )⊥⊥ and Im(T )⊥⊥ is a subspace, we see that

z = x− y ∈ Im(T )⊥⊥.

But this means 〈z,v〉 = 0 for every v ∈ Im(T )⊥. In particular, since z ∈ Im(T )⊥ we
must have

‖z‖2 = 〈z, z〉Rn = 0.

Therefore, z = 0 and x = y ∈ Im(T ). �

In summeary we have the following result:

Corollary 2 N (L)⊥ ⊂ Im(T ).

This result completes the proof of Theorem 2. To review we include the details of
two proofs of Corollary 2: If x ∈ N (L)⊥, then

x = y + z for y ∈ Im(T ) and z ∈ Im(T )⊥.

Then z = x − y ∈ Im(T )⊥⊥ using the note in the proof of Lemma 1 according to
which y ∈ Im(T ) ⊂ Im(T )⊥⊥. This means

〈z,v〉Rn = 0 for every v ∈ Im(T )⊥.

This applies in particular to v = z, so

‖z‖2 = 〈z, z〉 = 0.

We conclude x = y ∈ Im(t).
For the second proof we note that

N (L)⊥ ⊂ Im(T )⊥⊥ by Corollary 1

⊂ Im(T ) by Lemma 2. �
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2.4 Examples

Example 1 The linear function L : R1 → R
2 by L(x) = (2x, x) is an isomorphism

onto span{(2, 1)T}. The mapping T is given by

T

(

w1

w2

)

= (2, 1)

(

w1

w2

)

= 2w1 + w2,

and this function is onto R
1. There is no alternative choice for Ṽ in this case

since, in particular, N (L) = {0}. Restricting T to Im(L) = span{(2, 1)T}, we
get an isomorphism and we see the composition

TL : R→ R by TLx = 5x

is an isomorphism. In particular, given any b = β(2, 1)T ∈ Im(L), there is a
unique x ∈ R for which Lx = b, namely, x = β. This solution may also be
obtained as

x = (TL)−1Tb =
1

5
(2, 1) β(2, 1)T = β.

More generally, given any b ∈ R
2 we can consider

x = (TL)−1Tb =
1

5
(2, 1) b.

The vector

b̃ = Lx =
2b1 + b2

5

(

2
1

)

= projIm(L)b

as noted above. The dimension of the domain of L is too small for anything
particularly interesting to happen here, and also N (L) = {0}, so nothing very
interesting is happening, but these are the details. The formula for the projec-
tion is somewhat interesting.

Example 2 The same details and computations for the second example run as fol-
lows: The image of T : R3 → R

2 is again the entire domain R
2. Furthermore,

the restriction of T to

Im(L) =







v1





2
0
1



+ v2





0
3
5



 : v1, v2 ∈ R
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is an isomorphism as is the composition TL : R2 → R
2. As computed above

with different names

TLx =

(

5 5
5 34

)(

x1
x2

)

,

and given b ∈ Im(L) there is a unique x ∈ R
2 given by

x = (TL)−1Tb =
1

145

(

34 −5
−5 5

)(

2b1 + b3
3b2 + 5b3

)

with Lx = b. More generally, if b ∈ R
3 we can consider

x = (TL)−1Tb =
1

145

(

34 −5
−5 5

)(

2b1 + b3
3b2 + 5b3

)

and we will have

Lx =
1

145





2(68b1 − 15b2 + 9b2
−6(2b1 − 3b2 − 4b2)
18b1 + 60b2 + 109b3



 = projIm(L)b.

Example 3 In this case the image of L is one dimensional, and it follows that L has
a non-trivial null space, so the situation should be more interesting. We recall
for reference that in this example

L(v) = (3v1 + 5v2)





2
7
1





where v = (v1, v2)
t ∈ R

2. The image of T is determined as follows: For w =
(w1, w2, w3)

T ∈ R
3 we have

Tw =

(

6w1 + 21w2 + 3w3

10w1 + 35w2 + 5w3

)

= (2w1 + 7w2 + w3)

(

3
5

)

.

Therefore, Im(T ) = span{(3, 5)T} and

N (L) = Im(T )⊥ = span

{(

−5
3

)}

.
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It is now possible to choose any one-dimensional subspace Ṽ = span{y} in R
2

with y /∈ N (L) to obtain a direct sum decomposition N (L) ⊕ Ṽ and isomor-
phisms

L∣
∣

Ṽ

: Ṽ → Im(L) and T∣
∣

Im(L)

: Im(L)→ Im(T ). (5)

The composition TL : Ṽ → Im(T ) is also an isomorphism, and we can find
formulas for these mappings as follows:

L(αy) = (3y1 + 5y2)α





2
7
1



 with

(

L∣
∣

Ṽ

)−1


t





2
7
1







 =
t

3y1 + 5y2
y, (6)

T∣
∣

Im(L)



t





2
7
1







 = 54t

(

3
5

)

with

(

T∣
∣

Im(L)

)−1(

β

(

3
5

))

=
β

54





2
7
1



 , (7)

and

TL(αy) = 54(3y1 + 5y2)α

(

3
5

)

with

(

TL∣
∣

Im(T )

)−1(

β

(

3
5

))

=
β

54(3y1 + 5y2)
y. (8)

Given any b = t(2, 7, 1)T ∈ Im(L), we can find a unique x ∈ Ṽ = span{y} for
which Lx = b, namely,

x =

(

L∣
∣

Ṽ

)−1


t





2
7
1







 =
t

3y1 + 5y2
y.

21



More generally, given any b ∈ R
3 we can consider

x =

(

TL∣
∣

Im(T )

)−1

Tb

=

(

TL∣
∣

Im(T )

)−1(

(2b1 + 7b2 + b3)

(

3
5

))

=
2b1 + 7b2 + b3
54(3y1 + 5y2)

y.

We then have

Lx =
2b1 + 7b2 + b3

54





2
7
1



 = projIm(L)b.

If we take the special choice y = T (2, 7, 1)T = 54(3, 5)T , then the discussion
following (5) simplifies as follows:

The one-dimensional subspace Ṽ = span{54(3, 5)T} = N (L)⊥ = Im(T ), so the
associated isomorphisms become

L∣
∣

Im(T )

: Im(T )→ Im(L) and T∣
∣

Im(L)

: Im(L)→ Im(T ). (9)

The composition TL : Im(T )→ Im(T ) is also an isomorphism and an operator
or automorphism, and the mappings (6-8) are given by

L(54α(3, 5)T ) = (54)(34)α





2
7
1



 with

(

L∣
∣

Im(T )

)−1


t





2
7
1







 =
t

34

(

3
5

)

, (10)

T∣
∣

Im(L)



t





2
7
1







 = 54t

(

3
5

)

with

(

T∣
∣

Im(L)

)−1(

β

(

3
5

))

=
β

54





2
7
1



 , (11)
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which is identical to (7), and

TL

(

54α

(

3
5

))

= (54)2(34)α

(

3
5

)

with

(

TL∣
∣

Im(T )

)−1(

β

(

3
5

))

=
β

(54)(34)

(

3
5

)

. (12)

Given any b = t(2, 7, 1)T ∈ Im(L), we can find a unique x ∈ Im(T ) =
span{54(3, 5)T} for which Lx = b, namely,

x =

(

L∣
∣

Im(T )

)−1


t





2
7
1







 =
t

34

(

3
5

)

.

More generally, given any b ∈ R
3 we can consider

x =

(

TL∣
∣

Im(T )

)−1

Tb

=

(

TL∣
∣

Im(T )

)−1(

(2b1 + 7b2 + b3)

(

3
5

))

=
2b1 + 7b2 + b3

(54)(34)

(

3
5

)

.

We then have

Lx =
2b1 + 7b2 + b3

54





2
7
1



 = projIm(L)b.

3 Big Picture Part II

The assertions
N (T ) = Im(L)⊥ and Im(T ) = N (L)⊥

of Theorem 2 should be compared to Axler’s results

N (L′) = Im(L)a and Im(L′) = N (L)a

on the dual map. Notice the annihilator plays the role of the orthogonal complement,
and we have shown the correspondence is complete: The corresponding spaces are
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essentially “the same” in the sense that they are images of one another under the
canonical isomorphisms. The resulting “splitting up” of V = R

n and W = R
m takes

place directly using orthogonal complements and the corresponding splitting of the
dual spaces takes places using the dual map and annihilators. See Figure 3.

Ṽ = N (L)a Im(L)

V W

N (L)

N (L′) = a(Im(L))

V ′ W ′

Ṽ ′ = Im(L′) = a(N (L)) W̃ ′

′

L

L

Φ Φ ΨΨ

L′

L′

Figure 3: The Big Picture. The restriction at the top is of primary interest. It is
an isomorphism from the subspace Ṽ of V which is the algebraic complement
of N (L) onto Im(L) in W . Again, all diagonal arrows correspond to injections. In
infinite dimensional spaces various parts of this diagram may cease to function. The
construction of L′ is always possible, but the isomorphisms Φ and Ψ may not be
available to tie the dual map back to the original linear map L in a nice way. If
V and W are any inner product spaces, there are still injections Φ and Ψ into the
respective dual spaces, but Φ and Ψ may not be surjective, i.e., there may be no Riesz
representation. In general for inner product spaces, if the image of L′ lies in the image
of Φ in V ′, then it should be possible to use L′ to construct a specific subspace Ṽ in
V so that the restriction of L to Ṽ is an isomorphism onto Im(L). In this case, the
algebraic complement obtained should be the orthogonal complement N (L)⊥.

We have mentioned that there are other ways to split V = R
n up in our examples

so that Rn = N (L)⊕ Ṽ . The identification or choice of Ṽ as

Ṽ = Im(T ) = Φ−1 Im(L′)
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has (at least) two advantages. First the composition

T ◦ L∣
∣

Im(T )

: Im(T )→ Im(T )

is an operator, i.e., a linear map with the same domain and co-domain, as opposed
to

T ◦ L∣
∣

Ṽ

: Ṽ → Im(T ).

In either case, this restricted composition is an isomporphism. The second advantage
is simply that the mapping T : Rm → R

n gives an easy way to identify a subspace Ṽ
that will accomplish the desired “splitting up” of V = R

n.
In infinite dimensional cases, it turns out that V ′ is never isomorphic to V . See

Assignment 11 for some suggestsions that V ′ is typically a “larger” vector space
when V is infinite dimensional. It may still be the case that there are some canonical
injections Φ and Ψ from V into V ′ and from W into W ′ respectively. In these cases,
some version of the discussion about our examples may apply.

Another topic that should be considered is the possibility of how the above dis-
cussion adapts (or fails to adapt) to the situation when V and W are complex vector
fields.

In the general case, there is no isomorphism between V and V ′, and consequently,
the diagram/connection illustrated in Figure 3 and our discussion above “breaks
apart.” There is in general no mapping T : W → V corresponding to L′ : W ′ → V ′.
Nevertheless, there is always a mapping L′ : W ′ → V ′, and one can think of Im(L′)
and N (L′) with the relations

N (L′) = a(Im(L)) ∼= Im(L)⊥ = Im(L)a

and
Im(L′) = a(N (L)) ∼= N (L)⊥ = N (L)a

as “weak imitations” for the spaces Im(T )⊥ and N (L)⊥. As U⊥ is called the orthog-
onal complement of a subspace U in a vector space V , we might call the annihilator
a(W ) the “algebraic complement” of a subspace W ⊂ V ′ of the dual space V ′.

As a final remark, the dual spaces V ′ of linear functionals defined by Axler are
sometimes called algebraic dual spaces. This terminology is in contrast to what
are sometimes called analytic dual spaces (or also just simply dual spaces in other
contexts). Those contexts include, for example, when one has an inner product (and
an induced/associated norm). In that case, there is a notion of continuity, and
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instead of the algebraic dual space V ′ we have considered, one restricts to the smaller
(dual) space of continuous linear functionals

C0(V → F ) ∩ L(V → F ).

This set constitutes the analytic dual space of V . In fact, the approach Axler is
taking to linear algebra (especially in Section 3F concerning duality) may be viewed
as using techniques from the subject of linear algebra on infinite dimensional
spaces, that is the study of linear functions L : X → Y where X and Y are infinite
dimensional spaces. As Axler mentioned, usually linear algebra, as a subject, is
synonomous with the study of linear functions on finite dimensional vector spaces, as
suggested by the title of Halmos’ book. This more difficult subject of linear algebra
on infinite dimensional spaces is usually called functional analysis. As functional
analysis is generally a more difficult subject than plain-Jane linear algebra, one usually
makes additional assumptions, like the presence of inner products and norms. And
one also assumes in functional analysis that linear functionals are continuous. As an
aside, it does turn out that cases where the smaller analytic dual is isomorphic to
the vector space V are of interest. In particular, a normed space V (in functional
analysis) for which the analytic double dual is isomorphic to the original space V is
called a reflexive space. This may also be viewed as a kind of “weak imitation” of
our discussion of the double orthogonal complement above.

In any case, it is quite interesting that Axler is using a kind of “functional analysis”
approach to linear algebra in Section 3F on duality, which is often not even mentioned
as a topic in linear algebra. The real significance of this is that he gets a proof of
what might be considered the first really difficult theorem in linear algebra
that the column rank and the row rank of a matrix are the same, and he gets this
proof without saying much of anything at all about matrices. Usually, one has to
go through a lengthy and complicated discussion of Gaussian elimination and pivots
and such things to prove row rank and column rank are equal. Duality gives you this
result essentially for “free,” that is without much complication but just for putting in
the effort of learning a few natural definitions and following your nose through some
functional analytic “abstract nonsense.”
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