Assignment 9: Products, Quotients, and Duality (Sections 3E-F) Due Tuesday April 5, 2022

John McCuan

March 12, 2022

Problem 1 (Axler 3E1) If $f : X \to Y$ is any function from X to Y, then the graph of f is defined to be the set

$$\{(x, f(x)) : x \in X\}.$$

Note that this is a set of ordered pairs, and the set of all ordered pairs is called the cross product:

$$X \times Y = \{(x, y) : x \in X, y \in Y\}.$$

Let V and W be vector spaces, and consider a function $\phi : V \to W$. Show that ϕ is linear if and only if the graph of ϕ is a subspace of $V \times W$.

Problem 2 (Axler 3E2) Show that if V_1, V_2, \ldots, V_n are vector spaces and $V_1 \times V_2 \times \cdots \times V_n$ is finite dimensional, then each vector space V_j for $j = 1, 2, \ldots, n$ is finite dimensional.

Problem 3 (Axler 3E3, extension) Give an example of a vector space V having subspaces W_1 and W_2 such that $W_1 \times W_2$ is isomorphic to $W_1 + W_2$, but $W_1 + W_2$ is not a direct sum.

Problem 4 (Axler 3E7) Let V be a vector space with subspaces W_1 and W_2 . Show the following: If v and \tilde{v} are vectors in V for which

$$v + W_1 = \tilde{v} + W_2,$$

when $W_1 = W_2$.

Problem 5 (Axler 3E8) Let V be a vector space and $A \subset V$. Show that A is an affine subspace of V if and only if the following hold

- (i) V is nonempty, and
- (ii) $(1-t)v + t\tilde{v} \in A$ whenever $v, \tilde{v} \in V$ and $t \in F$.

Problem 6 (Axler 3E8) Given an affine subspaces A_1 and A_2 of a vector space V, so that either $A_1 \cap A_2$ is an affine subspace or $A_1 \cap A_2$ is empty.

Problem 7 (Axler 3E12) Let V be a vector space with a subspace W such that V/W is finite dimensional. Show V is isomorphic to

 $W \times (V/W).$

Problem 8 (Axler 3E13) Let V be a vector space and W a subspace of V. Show the following: If

(i) $\{w_1, w_2, \ldots, w_k\}$ is a basis for W, and

(ii) $\{v_1 + W, v_2 + W, \dots, v_{\ell} + W\}$ is a basis for V/W,

then $\{v_1, v_2, ..., v_{\ell}, w_1, w_2, ..., w_k\}$ is a basis for V.

Problem 9 (Axler 3E17) Let V be a vector space with a subspace W for which V/W is finite dimensional. Show there exists a subspace M of V for which

- (i) dim $M = \dim V/W$, and
- (ii) $V = M \oplus W$.

Problem 10 (Axler 3F1-2) Consider the real vector space $V = C^0[0, 1]$ of real valued continuous functions on the unit interval, and let $V' = \mathcal{L}(V \to \mathbb{R})$ denote the **dual space** of linear functionals $\phi : V \to \mathbb{R}$ on V. Show the following:

- (a) Each element $\phi \in V'$ is either surjective or the zero map.
- (b) $\psi_1 : C^0[0,1] \to \mathbb{R}$ by $\psi_1[f] = f(0)$ is in V'.
- (c) $\psi_2: C^0[0,1] \to \mathbb{R} \ by$

$$\psi_2[f] = \int_0^1 f(x) \, dx$$

is in V'.

(d) Give three more (different) examples of linear functionals on $C^{0}[0,1]$.