Assignment 9: Products, Quotients, and Duality (Sections 3E-F) Due Tuesday April 5, 2022

John McCuan

March 12, 2022

Problem 1 (Axler 3E1) If $f: X \rightarrow Y$ is any function from X to Y, then the graph of f is defined to be the set

$$
\{(x, f(x)): x \in X\}
$$

Note that this is a set of ordered pairs, and the set of all ordered pairs is called the cross product:

$$
X \times Y=\{(x, y): x \in X, y \in Y\}
$$

Let V and W be vector spaces, and consider a function $\phi: V \rightarrow W$. Show that ϕ is linear if and only if the graph of ϕ is a subspace of $V \times W$.

Problem 2 (Axler 3E2) Show that if $V_{1}, V_{2}, \ldots, V_{n}$ are vector spaces and $V_{1} \times V_{2} \times$ $\cdots \times V_{n}$ is finite dimensional, then each vector space V_{j} for $j=1,2, \ldots, n$ is finite dimensional.

Problem 3 (Axler 3E3, extension) Give an example of a vector space V having subspaces W_{1} and W_{2} such that $W_{1} \times W_{2}$ is isomorphic to $W_{1}+W_{2}$, but $W_{1}+W_{2}$ is not a direct sum.

Problem 4 (Axler 3E7) Let V be a vector space with subspaces W_{1} and W_{2}. Show the following: If v and \tilde{v} are vectors in V for which

$$
v+W_{1}=\tilde{v}+W_{2}
$$

when $W_{1}=W_{2}$.

Problem 5 (Axler 3E8) Let V be a vector space and $A \subset V$. Show that A is an affine subspace of V if and only if the following hold
(i) V is nonempty, and
(ii) $(1-t) v+t \tilde{v} \in A$ whenever $v, \tilde{v} \in V$ and $t \in F$.

Problem 6 (Axler 3E8) Given an affine subspaces A_{1} and A_{2} of a vector space V, so that either $A_{1} \cap A_{2}$ is an affine subspace or $A_{1} \cap A_{2}$ is empty.

Problem 7 (Axler 3E12) Let V be a vector space with a subspace W such that V / W is finite dimensional. Show V is isomorphic to

$$
W \times(V / W)
$$

Problem 8 (Axler 3E13) Let V be a vector space and \mathcal{W} a subspace of V. Show the following: If
(i) $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is a basis for W, and
(ii) $\left\{v_{1}+W, v_{2}+W, \ldots, v_{\ell}+W\right\}$ is a basis for V / W, then $\left\{v_{1}, v_{2}, \ldots, v_{\ell}, w_{1}, w_{2}, \ldots, w_{k}\right\}$ is a basis for V.

Problem 9 (Axler 3E17) Let V be a vector space with a subspace W for which V / W is finite dimensional. Show there exists a subspace M of V for which
(i) $\operatorname{dim} M=\operatorname{dim} V / W$, and
(ii) $V=M \oplus W$.

Problem 10 (Axler 3F1-2) Consider the real vector space $V=C^{0}[0,1]$ of real valued continuous functions on the unit interval, and let $V^{\prime}=\mathcal{L}(V \rightarrow \mathbb{R})$ denote the dual space of linear functionals $\phi: V \rightarrow \mathbb{R}$ on V. Show the following:
(a) Each element $\phi \in V^{\prime}$ is either surjective or the zero map.
(b) $\psi_{1}: C^{0}[0,1] \rightarrow \mathbb{R}$ by $\psi_{1}[f]=f(0)$ is in V^{\prime}.
(c) $\psi_{2}: C^{0}[0,1] \rightarrow \mathbb{R}$ by

$$
\psi_{2}[f]=\int_{0}^{1} f(x) d x
$$

is in V^{\prime}.
(d) Give three more (different) examples of linear functionals on $C^{0}[0,1]$.

