Assignment 8: Invertibility (Section 3D) Due Tuesday March 22, 2022

John McCuan

March 7, 2022

Problem 1 (Axler 3D1) If $L \in \mathcal{L}(V \rightarrow W)$ and $M \in \mathcal{L}(W \rightarrow Z)$ with L and M both invertible, then $M L=M \circ L$ is invertible.
(a) Find the function $T \in \mathcal{L}(Z \rightarrow V)$ for which

$$
\begin{equation*}
M L \circ T=\operatorname{id}_{Z} \quad \text { and } \quad T \circ M L=\operatorname{id}_{V} \tag{1}
\end{equation*}
$$

(b) Verify the conditions in (1).

Problem 2 (Axler 3D2) Let V be a finite dimensional vector space with $\operatorname{dim}(V)>1$.
(a) If $L \in \mathcal{L}(V \rightarrow V)$ is not invertible, then show $c L$ is not invertible for every $C \in F$.
(b) Find noninvertible operators $L, M \in \mathcal{L}(V \rightarrow V)$ with $L+M$ invertible.
(c) Find invertible operators $L, M \in \mathcal{L}(V \rightarrow V)$ with $L+M$ not invertible.
(d) In part (c) can you find an example with $\operatorname{dim} \mathcal{N}(L+M)=1$?

Problem 3 (Axler 3D3, extension) Let V be a finite dimensional vector space and W a subspace of V. Show the following:
(a) If $M \in \mathcal{L}(W \rightarrow V)$ is injective, there exists some $L \in \mathcal{L}(V \rightarrow V)$ with
(i) L is invertible and
(ii) $L v=M v$ for all $v \in W$.
(b) If $L \in \mathcal{L}(V \rightarrow V)$ with L is invertible, then $M: W \rightarrow V$ by $M v=L v$ satisfies
(i) $M \in \mathcal{L}(W \rightarrow V)$ and
(ii) M is injective.

Problem 4 (Axler 3D5) Let V be a finite dimensional vector space and $L, M \in$ $\mathcal{L}(V \rightarrow W)$. Show the following:
(a) If $\operatorname{Im}(L)=\operatorname{Im}(M)$, then there exists an invertible operator $T \in \mathcal{L}(V \rightarrow V)$ with $L=M T$.
(b) there exists an invertible operator $T \in \mathcal{L}(V \rightarrow V)$ with $L=M T$, then $\operatorname{Im}(L)=$ $\operatorname{Im}(M)$.

Problem 5 (Axler 3D6) Let V and W be finite dimensional vector spaces and $L, M \in$ $\mathcal{L}(V \rightarrow W)$. Show the following:
(a) If $\operatorname{dim} \mathcal{N}(L)=\operatorname{dim} \mathcal{N}(M)$, then there are invertible operators $T \in \mathcal{L}(V \rightarrow V)$ and $S \in \mathcal{L}(W \rightarrow W)$ for which

$$
L=S M T
$$

(b) If there are invertible operators $T \in \mathcal{L}(V \rightarrow V)$ and $S \in \mathcal{L}(W \rightarrow W)$ for which

$$
L=S M T
$$

then $\operatorname{dim} \mathcal{N}(L)=\operatorname{dim} \mathcal{N}(M)$.
Problem 6 (Axler 3C14) Given a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of a vector space V, show that $L \in \mathcal{L}\left(V \rightarrow F^{n}\right)$ by

$$
L v=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad \text { where } \quad v=\sum_{j=1}^{n} a_{j} v_{j}
$$

is a linear isomorphism.

Problem 7 (Axler 3D16) Let V be a finite dimensional vector space and $L \in \mathcal{L}(V \rightarrow$ $V)$. Show the following: If

$$
L M=M L \quad \text { for every } M \in \mathcal{L}(V \rightarrow V)
$$

then there exists some $c \in F$ such that L has the form

$$
L v=c \underset{V}{\operatorname{id}}(v)
$$

Problem 8 (Axler 3D17) Let V be a finite dimensional vector space and \mathcal{W} a subspace of $\mathcal{L}(V \rightarrow V)$. Show the following: If

$$
L M=M L \in \mathcal{W} \quad \text { for every } L \in \mathcal{L}(V \rightarrow V) \text { and } M \in \mathcal{W}
$$

then either $\mathcal{W}=\{0\}$ contains only the zero map or $\mathcal{W}=\mathcal{L}(V \rightarrow V)$ is the entire collection of linear operators on V.

Problem 9 (Axler 3D19) If $L \in \mathcal{L}(\mathcal{P} \rightarrow \mathcal{P})$, where $\mathcal{P}=\mathcal{P}(F)$ denotes the vector space of polynomials with coefficients in a field F, and
(i) L is injective and
(ii) $\operatorname{deg}(L p) \leq \operatorname{deg} p$ for every $p \in \mathcal{P}$,
then show
(a) L is onto and
(b) $\operatorname{deg}(L p)=\operatorname{deg} p$ for every $p \in \mathcal{P}$.

Problem 10 (Axler 3D20) Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix with entries in a field F. Show that if $x_{1}=x_{2}=\cdots=x_{n}=0$ is the only solution of the system of equations

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{1 j} x_{j}=0 \\
& \sum_{j=1}^{n} a_{2 j} x_{j}=0 \\
& \vdots \\
& \sum_{j=1}^{n} a_{n j} x_{j}=0
\end{aligned}
$$

then the system of equations

$$
\begin{gathered}
\sum_{j=1}^{n} a_{1 j} x_{j}=c_{1} \\
\sum_{j=1}^{n} a_{2 j} x_{j}=c_{2} \\
\vdots \\
\sum_{j=1}^{n} a_{n j} x_{j}=c_{n}
\end{gathered}
$$

has a (unique) solution for each $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in F^{n}$.

