Assignment 8: Invertibility (Section 3D) Due Tuesday March 22, 2022

John McCuan

March 7, 2022

Problem 1 (Axler 3D1) If $L \in \mathcal{L}(V \to W)$ and $M \in \mathcal{L}(W \to Z)$ with L and M both invertible, then $ML = M \circ L$ is invertible.

(a) Find the function $T \in \mathcal{L}(Z \to V)$ for which

$$ML \circ T = \mathrm{id}_Z$$
 and $T \circ ML = \mathrm{id}_V$ (1)

(b) Verify the conditions in (1).

Problem 2 (Axler 3D2) Let V be a finite dimensional vector space with $\dim(V) > 1$.

- (a) If $L \in \mathcal{L}(V \to V)$ is not invertible, then show cL is not invertible for every $C \in F$.
- (b) Find noninvertible operators $L, M \in \mathcal{L}(V \to V)$ with L + M invertible.
- (c) Find invertible operators $L, M \in \mathcal{L}(V \to V)$ with L + M not invertible.
- (d) In part (c) can you find an example with dim $\mathcal{N}(L+M) = 1$?

Problem 3 (Axler 3D3, extension) Let V be a finite dimensional vector space and W a subspace of V. Show the following:

- (a) If $M \in \mathcal{L}(W \to V)$ is injective, there exists some $L \in \mathcal{L}(V \to V)$ with
 - (i) L is invertible and
 - (ii) Lv = Mv for all $v \in W$.
- (b) If $L \in \mathcal{L}(V \to V)$ with L is invertible, then $M : W \to V$ by Mv = Lv satisfies
 - (i) $M \in \mathcal{L}(W \to V)$ and
 - (ii) *M* is injective.

Problem 4 (Axler 3D5) Let V be a finite dimensional vector space and $L, M \in \mathcal{L}(V \to W)$. Show the following:

- (a) If $\operatorname{Im}(L) = \operatorname{Im}(M)$, then there exists an invertible operator $T \in \mathcal{L}(V \to V)$ with L = MT.
- (b) there exists an invertible operator $T \in \mathcal{L}(V \to V)$ with L = MT, then Im(L) = Im(M).

Problem 5 (Axler 3D6) Let V and W be finite dimensional vector spaces and $L, M \in \mathcal{L}(V \to W)$. Show the following:

(a) If dim $\mathcal{N}(L)$ = dim $\mathcal{N}(M)$, then there are invertible operators $T \in \mathcal{L}(V \to V)$ and $S \in \mathcal{L}(W \to W)$ for which

$$L = SMT.$$

(b) If there are invertible operators $T \in \mathcal{L}(V \to V)$ and $S \in \mathcal{L}(W \to W)$ for which

L = SMT,

then $\dim \mathcal{N}(L) = \dim \mathcal{N}(M)$.

Problem 6 (Axler 3C14) Given a basis $\{v_1, v_2, \ldots, v_n\}$ of a vector space V, show that $L \in \mathcal{L}(V \to F^n)$ by

$$Lv = (a_1, a_2, ..., a_n)$$
 where $v = \sum_{j=1}^n a_j v_j$

is a linear isomorphism.

Problem 7 (Axler 3D16) Let V be a finite dimensional vector space and $L \in \mathcal{L}(V \to V)$. Show the following: If

$$LM = ML$$
 for every $M \in \mathcal{L}(V \to V)$,

then there exists some $c \in F$ such that L has the form

$$Lv = c \operatorname{id}_V(v).$$

Problem 8 (Axler 3D17) Let V be a finite dimensional vector space and W a subspace of $\mathcal{L}(V \to V)$. Show the following: If

$$LM = ML \in \mathcal{W}$$
 for every $L \in \mathcal{L}(V \to V)$ and $M \in \mathcal{W}$,

then either $\mathcal{W} = \{0\}$ contains only the zero map or $\mathcal{W} = \mathcal{L}(V \to V)$ is the entire collection of linear operators on V.

Problem 9 (Axler 3D19) If $L \in \mathcal{L}(\mathcal{P} \to \mathcal{P})$, where $\mathcal{P} = \mathcal{P}(F)$ denotes the vector space of polynomials with coefficients in a field F, and

- (i) L is injective and
- (ii) $\deg(Lp) \leq \deg p$ for every $p \in \mathcal{P}$,

 $then \ show$

- (a) L is onto and
- (b) $\deg(Lp) = \deg p$ for every $p \in \mathcal{P}$.

Problem 10 (Axler 3D20) Let $A = (a_{ij})$ be an $n \times n$ matrix with entries in a field F. Show that if $x_1 = x_2 = \cdots = x_n = 0$ is the **only solution** of the system of equations

$$\sum_{j=1}^{n} a_{1j} x_j = 0$$
$$\sum_{j=1}^{n} a_{2j} x_j = 0$$
$$\vdots$$
$$\sum_{j=1}^{n} a_{nj} x_j = 0,$$

then the system of equations

$$\sum_{j=1}^{n} a_{1j} x_j = c_1$$
$$\sum_{j=1}^{n} a_{2j} x_j = c_2$$
$$\vdots$$
$$\sum_{j=1}^{n} a_{nj} x_j = c_n$$

has a (unique) solution for each $(c_1, c_2, \ldots, c_n) \in F^n$.