Assignment $6=$ Exam 2: Linear Functions (Section 3B) Due Tuesday March 8, 2022

John McCuan

March 7, 2022

Problem 1 Let V and W be vector spaces over the same field. Prove the following:
(a) If $L: V \rightarrow W$ is linear, then $L\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$.
(b) If $h: V \rightarrow W$ is homogeneous, then $h\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$.
(c) If $\alpha: V \rightarrow W$ is additive, then $\alpha\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$.

Problem 2 (Axler 3B10) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ spans a vector space V and $L: V \rightarrow W$ is linear, then $\left\{L\left(v_{1}\right), L\left(v_{2}\right), \ldots, L\left(v_{n}\right)\right\}$ spans the image of L.

Problem 3 (Axler 3B14) If $L: V \rightarrow \mathbb{C}^{5}$ is linear and has null space a threedimensional subspace of a complex vector space V with $\operatorname{dim}(V)=8$, then show L is surjective.

Problem 4 (Axler 3B17) Let V and W be finite dimensional vector spaces over the same field.
(a) Show that if $\operatorname{dim}(V) \leq \operatorname{dim}(W)$, then there exists an injective linear function $L: V \rightarrow W$.
(b) Show that if there exists an injective linear function $L: V \rightarrow W$, then $\operatorname{dim}(V) \leq$ $\operatorname{dim}(W)$.

Problem 5 (Axler 3B20) Let W be a finite dimensional vector space and consider a linear function $L: V \rightarrow W$. Show the following:
(a) If there exists a linear function $T: W \rightarrow V$ such that the composition $T L=$ $T \circ L=\mathrm{id}_{V}$, then L is injective.
(b) If L is injective, then there exists a linear function $T: W \rightarrow V$ such that the composition $T L=T \circ L=\mathrm{id}_{V}$.

Problem 6 (Axler 3B22) If V and W are finite dimensional vector spaces and L : $V \rightarrow W$ and $T: W \rightarrow Z$ are linear, then (show that)

$$
\begin{equation*}
\operatorname{dim} \mathcal{N}(T \circ L) \leq \operatorname{dim} \mathcal{N}(L)+\operatorname{dim} \mathcal{N}(T) \tag{1}
\end{equation*}
$$

where \mathcal{N} denotes the null space of a linear function.
Problem 7 (Axler 3B22) Find an example of linear functions $L: V \rightarrow W$ and $T: W \rightarrow Z$ satisfying the hypotheses of the previous problem and for which equality holds in (1).

Problem 8 (systems of linear equations) Show that a homogeneous system of 26 linear equations

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i, 27} x_{27}=0, \quad i=1,2, \ldots, 26
$$

in 27 unknowns $x_{1}, x_{2}, \ldots, x_{27}$ has a solution

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{27}\right) \in F^{27} \backslash\{\mathbf{0}\}
$$

Problem 9 (Axler 3B27) Let $\mathcal{P}=\mathcal{P}(F)$ denote the vector space of polynomials with subspaces $\mathcal{P}_{n}=\mathcal{P}_{n}(F)$ of polynomials of degree no more than n as usual.
(i) Using what you know about the properties of differentiation from calculus, show that $D: \mathcal{P} \rightarrow \mathcal{P}$ by

$$
D p=\frac{d}{d x} p
$$

is linear.
(ii) If D is restricted to \mathcal{P}_{n}, what is the image of the restriction?
(iii) Show that $L: \mathcal{P} \rightarrow \mathcal{P}$ given by $L q=5 D D q+3 D q$ is a linear function.
(iv) Use the linear function L of the previous part to show that given any $p \in \mathcal{P}$ there exists a polynomial $q \in \mathcal{P}$ for which $L q=p$. Hint(s): Restrict L to an appropriate subspace and find the null space of L.

Problem 10 (Axler 3B30) Let V be a vector space over the field F and ϕ and ψ two elements of $\mathcal{L}(V \rightarrow F)$. Sometimes the functions in $\mathcal{L}(V \rightarrow F)$ are called linear functionals. Show that if the null spaces of ϕ and ψ satisfy

$$
\mathcal{N}(\phi)=\mathcal{N}(\psi)
$$

then there exists a constant $c \in F$ such that $\phi=c \psi$.

