Assignment 6 = Exam 2: Linear Functions (Section 3B) Due Tuesday March 8, 2022

John McCuan

March 7, 2022

Problem 1 Let V and W be vector spaces over the same field. Prove the following:

(a) If $L: V \to W$ is linear, then $L(\mathbf{0}_V) = \mathbf{0}_W$.

(b) If $h: V \to W$ is homogeneous, then $h(\mathbf{0}_V) = \mathbf{0}_W$.

(c) If $\alpha: V \to W$ is additive, then $\alpha(\mathbf{0}_V) = \mathbf{0}_W$.

Problem 2 (Axler 3B10) If $\{v_1, v_2, \ldots, v_n\}$ spans a vector space V and $L: V \to W$ is linear, then $\{L(v_1), L(v_2), \ldots, L(v_n)\}$ spans the image of L.

Problem 3 (Axler 3B14) If $L : V \to \mathbb{C}^5$ is linear and has null space a threedimensional subspace of a complex vector space V with dim(V) = 8, then show L is surjective.

Problem 4 (Axler 3B17) Let V and W be finite dimensional vector spaces over the same field.

- (a) Show that if $\dim(V) \leq \dim(W)$, then there exists an injective linear function $L: V \to W$.
- (b) Show that if there exists an injective linear function $L: V \to W$, then $\dim(V) \leq \dim(W)$.

Problem 5 (Axler 3B20) Let W be a finite dimensional vector space and consider a linear function $L: V \to W$. Show the following:

- (a) If there exists a linear function $T: W \to V$ such that the composition $TL = T \circ L = id_V$, then L is injective.
- (b) If L is injective, then there exists a linear function $T: W \to V$ such that the composition $TL = T \circ L = id_V$.

Problem 6 (Axler 3B22) If V and W are finite dimensional vector spaces and L : $V \rightarrow W$ and $T: W \rightarrow Z$ are linear, then (show that)

$$\dim \mathcal{N}(T \circ L) \le \dim \mathcal{N}(L) + \dim \mathcal{N}(T) \tag{1}$$

where \mathcal{N} denotes the null space of a linear function.

Problem 7 (Axler 3B22) Find an example of linear functions $L : V \to W$ and $T: W \to Z$ satisfying the hypotheses of the previous problem and for which equality holds in (1).

Problem 8 (systems of linear equations) Show that a homogeneous system of 26 linear equations

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{i,27}x_{27} = 0, \qquad i = 1, 2, \dots, 26$$

in 27 unknowns x_1, x_2, \ldots, x_{27} has a solution

$$\mathbf{x} = (x_1, \dots, x_{27}) \in F^{27} \setminus \{\mathbf{0}\}.$$

Problem 9 (Axler 3B27) Let $\mathcal{P} = \mathcal{P}(F)$ denote the vector space of polynomials with subspaces $\mathcal{P}_n = \mathcal{P}_n(F)$ of polynomials of degree no more than n as usual.

 (i) Using what you know about the properties of differentiation from calculus, show that D : P → P by

$$Dp = \frac{d}{dx}p$$

is linear.

- (ii) If D is restricted to \mathcal{P}_n , what is the image of the restriction?
- (iii) Show that $L: \mathcal{P} \to \mathcal{P}$ given by Lq = 5DDq + 3Dq is a linear function.

(iv) Use the linear function L of the previous part to show that given any $p \in \mathcal{P}$ there exists a polynomial $q \in \mathcal{P}$ for which Lq = p. Hint(s): Restrict L to an appropriate subspace and find the null space of L.

Problem 10 (Axler 3B30) Let V be a vector space over the field F and ϕ and ψ two elements of $\mathcal{L}(V \to F)$. Sometimes the functions in $\mathcal{L}(V \to F)$ are called **linear** functionals. Show that if the null spaces of ϕ and ψ satisfy

$$\mathcal{N}(\phi) = \mathcal{N}(\psi),$$

then there exists a constant $c \in F$ such that $\phi = c\psi$.