Assignment 5: Linear Functions (Section 3B) Due Tuesday March 1, 2022

John McCuan

February 22, 2022

Problem 1 (Definitions) Let $L: V \to W$ be a linear function.

- (a) Give a precise definition of the null space $\mathcal{N} = \mathcal{N}(L)$ of the linear function $L: V \to W$.
- (b) Prove the null space is a vector subspace of the domain V.
- (c) Give a precise definition of the range $\mathcal{R} = \mathcal{R}(L)$ of the linear function $L: V \to W$.
- (d) Prove the range is a vector subspace of the codomain W.

Problem 2 (Axler 3B1) Give an example of a linear function $L : V \to W$ with $\dim \mathcal{N}(L) = 3$ and $\dim \mathcal{R}(L) = 2$.

Problem 3 (Axler 3B2) If $L: V \to V$ and $T: V \to V$ are linear functions, with

 $\mathcal{R}(L) \subset \mathcal{N}(T),$

Then show the compositions $(LT)^2: V \to V$ and $(TL)^2: V \to V$ are (both) the zero map.

Problem 4 (Definitions) Let $f : X \to Y$ be a function.

(a) Give a precise definition of what it means for f to be surjective.

(b) Give a precise definition of what it means for f to be injective.

(c) Prove that a linear function $L: V \to W$ is injective if and only if $\mathcal{N}(L) = \{\mathbf{0}\}$.

Problem 5 (Axler 3B3) Consider a set of vectors

$$\{v_1, v_2, \ldots, v_k\}$$

in a vector space V (over a field F). Consider also the function $L: F^m \to V$ by

$$L(x_1, x_2, \dots, x_k) = \sum_{j=1}^k x_j v_j$$

- (a) Show that L is linear, i.e., $L \in \mathcal{L}(F^n \to V)$.
- (b) If $\{v_1, v_2, \ldots, v_k\}$ is a spanning set for V, what can you say about the linear function L?
- (c) If $\{v_1, v_2, \ldots, v_k\}$ is a linearly independent set in V, what can you say about the linear function L?

Problem 6 (Axler 3B7) If V and W are finite dimensional vector spaces over the same field and satisfy

$$2 \le \dim V \le \dim W,$$

then show

$$S = \{ L \in \mathcal{L}(V \to W) : L \text{ is not injective} \}$$

is not a subspace of $\mathcal{L}(V \to W)$.

Problem 7 (Axler 3B9) Let V and W be vector spaces and $L \in \mathcal{L}(V \to W)$. If

 $\{v_1, v_2, \ldots, v_k\}$ is a linearly independent set in V

and L is injective, prove

 $\{Lv_1, Lv_2, \ldots, Lv_k\}$ is a linearly independent set in W.

Problem 8 (Axler 3B12) Let V be a finite dimensional vector space and W and vector space. Prove that if $L : V \to W$ is a linear function, then there exists a subspace U of V such that

- (i) $U \cap \mathcal{N}(L) = \{0\}, and$
- (ii) $\mathcal{R}(L) = \{Lv : v \in U\}.$

Problem 9 (Axler 3B13) Show that if $L : \mathbb{C}^4 \to \mathbb{C}^2$ with

$$\mathcal{N}(L) = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4 : z_1 = 5z_2 \text{ and } z_3 = 7z_4\},\$$

then L is surjective.

Problem 10 (Axler 3B31) Give an example of two linear functions

$$L_1, L_2 \in \mathcal{L}(\mathbb{R}^5 \to \mathbb{R}^2)$$

such that

- (i) $\mathcal{N}(L_1) = \mathcal{N}(L_2)$, but
- (ii) There is no scalar $c \in \mathbb{R}$ for which $L_2 = cL_1$.