Assignment 5: Linear Functions (Section 3B) Due Tuesday March 1, 2022

John McCuan

February 22, 2022

Problem 1 (Definitions) Let $L: V \rightarrow W$ be a linear function.
(a) Give a precise definition of the null space $\mathcal{N}=\mathcal{N}(L)$ of the linear function $L: V \rightarrow W$.
(b) Prove the null space is a vector subspace of the domain V.
(c) Give a precise definition of the range $\mathcal{R}=\mathcal{R}(L)$ of the linear function $L: V \rightarrow$ W.
(d) Prove the range is a vector subspace of the codomain W.

Problem 2 (Axler 3B1) Give an example of a linear function $L: V \rightarrow W$ with $\operatorname{dim} \mathcal{N}(L)=3$ and $\operatorname{dim} \mathcal{R}(L)=2$.

Problem 3 (Axler 3B2) If $L: V \rightarrow V$ and $T: V \rightarrow V$ are linear functions, with

$$
\mathcal{R}(L) \subset \mathcal{N}(T)
$$

Then show the compositions $(L T)^{2}: V \rightarrow V$ and $(T L)^{2}: V \rightarrow V$ are (both) the zero map.

Problem 4 (Definitions) Let $f: X \rightarrow Y$ be a function.
(a) Give a precise definition of what it means for f to be surjective.
(b) Give a precise definition of what it means for f to be injective.
(c) Prove that a linear function $L: V \rightarrow W$ is injective if and only if $\mathcal{N}(L)=\{\mathbf{0}\}$.

Problem 5 (Axler 3B3) Consider a set of vectors

$$
\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}
$$

in a vector space V (over a field F). Consider also the function $L: F^{m} \rightarrow V$ by

$$
L\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{j=1}^{k} x_{j} v_{j} .
$$

(a) Show that L is linear, i.e., $L \in \mathcal{L}\left(F^{n} \rightarrow V\right)$.
(b) If $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a spanning set for V, what can you say about the linear function L ?
(c) If $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a linearly independent set in V, what can you say about the linear function L ?

Problem 6 (Axler 3B7) If V and W are finite dimensional vector spaces over the same field and satisfy

$$
2 \leq \operatorname{dim} V \leq \operatorname{dim} W
$$

then show

$$
S=\{L \in \mathcal{L}(V \rightarrow W): L \text { is not injective }\}
$$

is not a subspace of $\mathcal{L}(V \rightarrow W)$.
Problem 7 (Axler 3B9) Let V and W be vector spaces and $L \in \mathcal{L}(V \rightarrow W)$. If

$$
\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \text { is a linearly independent set in } V
$$

and L is injective, prove

$$
\left\{L v_{1}, L v_{2}, \ldots, L v_{k}\right\} \text { is a linearly independent set in } W .
$$

Problem 8 (Axler 3B12) Let V be a finite dimensional vector space and W and vector space. Prove that if $L: V \rightarrow W$ is a linear function, then there exists a subspace U of V such that
(i) $U \cap \mathcal{N}(L)=\{\mathbf{0}\}$, and
(ii) $\mathcal{R}(L)=\{L v: v \in U\}$.

Problem 9 (Axler 3B13) Show that if $L: \mathbb{C}^{4} \rightarrow \mathbb{C}^{2}$ with

$$
\mathcal{N}(L)=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{C}^{4}: z_{1}=5 z_{2} \text { and } z_{3}=7 z_{4}\right\}
$$

then L is surjective.
Problem 10 (Axler 3B31) Give an example of two linear functions

$$
L_{1}, L_{2} \in \mathcal{L}\left(\mathbb{R}^{5} \rightarrow \mathbb{R}^{2}\right)
$$

such that
(i) $\mathcal{N}\left(L_{1}\right)=\mathcal{N}\left(L_{2}\right)$, but
(ii) There is no scalar $c \in \mathbb{R}$ for which $L_{2}=c L_{1}$.

