Assignment 4: Linear Functions Due Tuesday February 22, 2022

John McCuan

January 31, 2022

Problem 1 (Axler 3A4) Let V and W be vector spaces over a field F.
(a) What does it mean for a function $L: V \rightarrow W$ to be linear?
(b) If $L: V \rightarrow W$ is linear and $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subset V$ with
$\left\{L v_{1}, L v_{2}, \ldots, L v_{k}\right\}$ linearly independent,
then show $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.
Problem 2 (Axler 3A5) Let V and W be vector spaces over a field F.
(a) If $L: V \rightarrow W$ is linear and $T: V \rightarrow W$ is linear, what is the sum of L and T ?
(b) If $L: V \rightarrow W$ is linear and $a \in F$, what is the scaling of L by a ?
(c) Denote by $\mathcal{L}(V \rightarrow W)$ the set of all linear functions from V to W. With the operations from parts (a) and (b) above prove $\mathcal{L}(V \rightarrow W)$ is a vector space. Hint: $\mathcal{L}(V \rightarrow W) \subset V^{W}$.

Problem 3 (Axler 3A3) Given real constants $a_{1 j}$ for $j=1,2, \ldots, n$, define a function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{1 j} x_{j} .
$$

(a) Show that L is linear, i.e., $L \in \mathcal{L}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$.
(b) What are the partial derivatives of L?
(c) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of \mathbb{R}^{n} and $T \in \mathcal{L}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$ satisfies

$$
T\left(v_{j}\right)=L\left(v_{j}\right) \quad \text { for } j=1,2, \ldots, n,
$$

show $T(v)=L(v)$ for all $v \in \mathbb{R}^{n}$, i.e., $T=L$.
Problem 4 (Axler 3A3) Given complex constants $a_{1 j}$ for $j=1,2, \ldots, n$, and

$$
a_{2 j}, \quad \text { for } j=1,2, \ldots, n,
$$

define a function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ by

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{j=1}^{n} a_{1 j} x_{j}, \sum_{j=1}^{n} a_{2 j} x_{j}\right) .
$$

(a) Show that L is linear, i.e., $L \in \mathcal{L}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{2}\right)$.
(b) If $T \in \mathcal{L}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{2}\right)$, then show there are constants

$$
b_{1 j} \text { for } j=1,2, \ldots, n \quad \text { and } \quad b_{2 j} \text { for } j=1,2, \ldots, n
$$

such that

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{j=1}^{n} b_{1 j} x_{j}, \sum_{j=1}^{n} b_{2 j} x_{j}\right) .
$$

Problem 5 (Axler 3A6) If V, W, Y, and Z are four vector spaces over the same field and

$$
L \in \mathcal{L}(V, W), M \in \mathcal{L}(W, Y), \text { and } T \in \mathcal{L}(Y, Z)
$$

recall that the compositions $M \circ L$ and $T \circ M$ are defined by

$$
M \circ L(v)=M(V(v)) \quad \text { and } \quad T \circ M(w)=T(M(w)) .
$$

(a) Show that $M \circ L \in \mathcal{L}(V \rightarrow Y)$ and $T \circ M \in \mathcal{L}(W \rightarrow Z)$.
(b) To what sets do $(T \circ M) \circ L$ and $T \circ(M \circ L)$ belong?
(c) Show

$$
(T \circ M) \circ L=T \circ(M \circ L) .
$$

Problem 6 Given any vector space V, show that the identity function $\operatorname{id}_{V}: V \rightarrow V$ by

$$
\operatorname{id}_{V}(v)=v
$$

satisfies $\operatorname{id}_{V} \in \mathcal{L}(V \rightarrow V)$.
Problem 7 (Axler 3A8) Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying $f(a v)=a f(v)$ for every $a \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$, but

$$
f \notin \mathcal{L}\left(\mathbb{R}^{2} \rightarrow \mathbb{R}\right)
$$

Problem 8 (Axler 3A10) Let W be a proper subspace of a vector space V. (This just means W is a subspace of V, but $W \neq V$.) Also, let Z be a vector space over the same field, and let $L \in \mathcal{L}(W \rightarrow Z)$. Define

$$
f: V \rightarrow Z \quad \text { by } \quad f(v)= \begin{cases}L v, & \text { if } v \in W \\ 0, & \text { if } v \notin W\end{cases}
$$

If there is some $v_{1} \in W$ such that $L v_{1} \neq \mathbf{0}$, then show $f \notin \mathcal{L}(V \rightarrow Z)$.
Problem 9 (Axler 3A11) Let V be a two-dimensional subspace of \mathbb{R}^{3} and assume $L \in \mathcal{L}(V \rightarrow W)$. Show there exists a linear function $T \in \mathcal{L}\left(\mathbb{R}^{3} \rightarrow W\right)$ with

$$
T(v)=L(v) \quad \text { for every } v \in V
$$

Problem 10 (Axler 3A14) Find linear funtions $L, T \in \mathcal{L}\left(\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\right)$ for which

$$
L \circ T \neq T \circ L
$$

Remember that in this case $T \circ L$ and $L \circ T$ are in $\mathcal{L}\left(\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\right.$ and we call these compositions products and write $T L=T \circ L$ and $L T=L \circ T$. Thus, the "product" is not commutative in the ring $\mathcal{L}\left(\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\right)$.

