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Problem 1 (Axler 2A1,6) Let v1, v2, v3, and v4 be vectors in a vector space V .

(a) Show that if A = {v1, v2, v3, v4} spans V , then

B = {v1 − v2, v2 − v3, v3 − v4, v4}

spans V

(b) Show that if A is linearly independent, then B is linearly independent.

Problem 2 (Axler 2A2) Verify the following:

(a) A singleton {v} containing one vector in a vector space is linearly independent if
and only if v 6= 0.

(b) A doubleton {v1, v2} containing two vectors in a vector space is linearly indepen-
dent if and only if neither vector is a scalar multiple of the other.

(c) {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)} is linearly independent in R4.

(d) {1, z, z2, . . . , zm} is linearly independent in the vector space of polynomials with
complex coefficients P(C) for every m ∈ N0 = {0, 1, 2, . . .}.
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Problem 3 (Axler 2A4,5,12,13)

(a) Find all values of c for which {(2, 3, 1), (1,−1, 2), (7, 3, c)} is linearly dependent
in F 3.

(b) Show that {1 + i, 1− i} is linearly independent in the real vector space C.

(c) Show the following: If A = {p1, p2, p3, p4, p5, p6} is a collection of polynomials in
P4(F ), the vector space of polynomials with coefficients in F having degree four
or less, then A is linearly dependent.

(d) Show the following: If B = {p1, p2, p3, p4} is a collection of polynomials in P4(F ),
then

spanB 6= P4(F ).

Problem 4 (Axler 2B2,5) Verify the following:

(a) {1, z, z2, . . . , zm} is a basis for Pm(C) the vector space of polynomials with com-
plex coefficients and order less than or equal to m.

(b) There exists a basis {p1, p2, p3, p4} of P3(C) such that none of the polynomials
p1, p2, p3, p4 is of degree 2.

Problem 5 (Axler 2B7) Prove or disprove: If {v1, v2, v3, v4} is a basis of V and W
is a subspace of V such that v1, v2 ∈ W and v3 /∈ W and v4 /∈ W , then {v1, v2} is a
basis of W .

Problem 6 (Axler 2C8) Let

W =

{

p ∈ P4(R) :

∫

1

−1

p(x) dx = 0

}

.

(a) Show that W is a subspace of P4(R).

(b) Find a basis B for W .

(c) Extend the basis B to a basis A for P4(R).

(d) Find a subspace V of P4(R) such that P4(R) = W ⊕ V .

Problem 7 (Axler 2C10) Show that if A = {p0, p1, p2, . . . , pn} ⊂ P(F ) with deg(pj) =
j for j = 0, 1, 2, . . . , n, then A is a basis for Pn(F ).
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Solution: Remember that Pn = Pn(F ) is the vector space of polynomials of degree
at most n, and to be a basis means to be a linearly indepdendent spanning set.
Thus, we wish to show A is linearly independent and span(A) = Pn.

As the notation gets a little cumbersome here, let me illustrate the situation in a
case when n is relatively small. Say n = 2 and we have polynomials

p0 = a00

p1 = a10 + a11x

p2 = a20 + a21x+ a22x
2.

The assumption that deg(pj) = j here may be interpreted to mean aj0 6= 0 for
j = 0, 1, 2. That is, the top order coefficient of each polynomial is nonzero. In
particular, p0 = a00 6= 0 giving the first condition of Axler’s lemma for {p0, p1, p2} to
be a linearly independent set. It is pretty clear that

span{p0, p1, . . . , pℓ−1} ⊂ Pℓ−1.

That is, every linear combination of the polynomials p0, p1, . . . , pℓ−1 is a polynomial of
degree less than or equal to ℓ−1. This holds for us when ℓ = 1 or ℓ = 2, but if we had
more polynomials it is also clear that this argument holds in general. Consequently,
it is clear that

pℓ /∈ {p0, p1, . . . , pℓ−1} for ℓ = 1, 2.

And for {p0, p1, . . . , pn} in general

pℓ /∈ {p0, p1, . . . , pℓ−1} for ℓ = 1, 2, . . . n.

Axler’s lemma implies {p0, p1, . . . , pn} is linearly independent (particularly in the case
n = 2).

It remains to show {p0, p1, p2} spans P2. Let q be any polynomial of degree less
than or equal to 2. This means we can write

q = b0 + b1x+ · · ·+ bmx
m =

m
∑

j=0

bjx
j

where m ≤ 2 and bm 6= 0. Actually, there is another possibility, namely that q = 0,
but we can either ignore this case or simply note that

0 =

n
∑

j=0

0pj
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so the zero polynomial is certainly in the span of A = {p0, p1, p2}. Returning to the
“real” case in which bm 6= 0, we consider cases:

m = 0: In this case, q = b0 is (a) constant and

q =
b0
a00

p0 + 0p1 + 0p2.

We conclude q ∈ span{p0, p1, p2}.

m = 1: In this case, q = b0 + b1x with b1 6= 0. We can take

q =
b1
a11

p1 +

(

b0
a00

−
b1a10
a00a11

)

p0 + 0p2. (1)

This looks a little complicated, so let’s think about it a bit more.

In the end, we want to write q as a linear combination of p0, p1, p2:

q = c0p0 + c1p1 + c2p2 =

2
∑

j=0

cjpj .

Notice that we’ve put c2 = 0 as the coefficient of p2 in (1) because p2 has degree
two and q in this case has degree one. (So if we had a nonzero coefficient c2 for
p2 we would definitely get a degree two polynomial for every linear combination

c0p0 + c1p1 + c2p2 =
2
∑

j=0

cjpj ,

and that couldn’t be q. Next, we want the coefficient of x in

c0p0 + c1p1 + 0p2 =
1
∑

j=0

cjpj

to be b1. This coefficent, however, is

c1a11 since c1p1 = c1a11x+ c1a10

and c0p0 = c0a00 is constant. Therefore, we need

c1a11 = b1.
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That is,

c1 =
b1
a11

.

And you see this is the choice we have made for c1 in (1). It remains to determine
c0. So far we have

c2p2 + c1p1 + c0p0 =
b1
a11

(a11x+ a10) + c0a00.

Gathering together the constant terms we must have

b1
a11

a10 + c0a00 = b0.

That is,

c0 =
1

a00

(

b0 −
b1
a11

a10

)

which is the value we used in (1).

m = 2: In this case, q = b0 + b1x+ b2x
2 with b2 6= 0. Hopefully, we can see from the

previous case how to choose the coefficients c0, c1, c2. Writing

c2p2 + c1p1 + c0p0 = b2x
2 + b1x+ b0,

we can start with

c2 =
b2
a22

.

This choice means the coefficient of x in c2p2 + c1p1 + c0p0 is

b2
a22

a21 + c1a11.

This means we need

c1 =
1

a11

(

b1 −
b2
a22

a21

)

.

With this choice we can see the constant term in c2p2 + c1p1 + c0p0 is

b2
a22

a20 +
1

a11

(

b1 −
b2
a22

a21

)

a10 + c0a00.
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Hence we take

c0 =
1

a00

[

b0 −
b2
a22

a20 −
1

a11

(

b1 −
b2
a22

a21

)

a10

]

.

Indeed with this choice we see

q = b2x
2 + b1x+ b0

=
b2
a22

p2 +
1

a11

(

b1 −
b2
a22

a21

)

p1

+
1

a00

[

b0 −
b2
a22

a20 −
1

a11

(

b1 −
b2
a22

a21

)

a10

]

p0.

The General Case The solution we have given for n = 2 looks quite complicated,
and in the general case, it is probably convenient to use some sort of formal iterative
procedure (or perhaps a kind of induction). Let’s see:

We know as above that if we want to write

q =
m
∑

j=0

bjx
j =

n
∑

j=0

cjpj

where m ≤ n and bm 6= 0, then we need cn = cn−1 = · · · = cm+1 = 0 and

cm =
bm
amm

.

Here we are writing our given polynomials in A = {p0, p1, . . . , pn} as

pk =

k
∑

j=0

akjx
j

with akk 6= 0 for k − 0, 1, . . . , n. Working backwards, say we have determined the
coefficients cn, cn−1, . . . , cℓ for some ℓ ≤ m. By this we mean

m
∑

j=ℓ

cjpj

is a polynomial of degree m which we can write as

m
∑

j=ℓ

cjpj =

m
∑

j=0

βℓjx
j

6



with coefficients βℓ0, βℓ1, . . . , βℓm satisfying

βℓj = bj for j = ℓ, ℓ+ 1, . . . , m. (2)

We then consider a linear combination

cℓ−1pℓ−1 +

m
∑

j=ℓ

cjpj =

m
∑

j=0

βℓ−1,jx
j . (3)

Clearly since pℓ−1 has degree ℓ− 1, the condition (2) implies

βℓ−1,j = βℓj = bj for j = ℓ, ℓ+ 1, . . . , m. (4)

Furthermore, we can see the coefficent of xℓ−1 in (3) is

cℓ−1aℓ−1,ℓ−1 +

m
∑

j=ℓ

cjaj,ℓ−1.

Therefore, by choosing

cℓ−1 =
1

aℓ−1,ℓ−1

(

bℓ−1 −
m
∑

j=ℓ

cjaj,ℓ−1

)

we ensure the last/next relation to go along with (4), namely

βℓ−1,ℓ−1 = bℓ−1.

Repeating this procedure finitely many times, we obtain the condition of the recursion
with ℓ = 0 according to which

m
∑

j=0

cjpj =

m
∑

j=0

β0jx
j

is a polynomial with coefficients satisfying

βℓj = bj for j = 0, 1, . . . , m.

That is,

q =

m
∑

j=0

cjpj +

n
∑

j=m+1

0pj
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as was to be shown.
I guess this argument is pretty convincing and pretty good. Perhaps a more formal

induction on the index n is possible. Let’s see. A base case, of course, is when n = 0.
For this we have

A = A0 = {p0 = a00}.

Every constant q = b0 is a linear combination of p0 with

q =
b0
a00

p0.

Thus, we have established the base case in the assertion

A = An = {p0, p1, . . . , pn} spans Pn where A is any collection of polyno-
mials satisfying deg(pj) = j for j = 0, 1, . . . , n.

As an inductive hypothesis we may take

Every collection B = Bν = {Q0, Q1, . . . , Qν} spans Pν where B is any
collection of polynomials satisfying deg(Qj) = j for j = 0, 1, . . . , ν and
ν ≤ k.

We then consider a collection C = {p0, p2, . . . , pk+1} of polynomials with deg(pj) =
j for j = 0, 1, . . . , k + 1. Letting q be any polynomial in Pk+1, we can write

q =
m
∑

j=0

bjx
j

where deg(q) = m ≤ k + 1. If m < k + 1, then q ∈ Pk and q ∈ span{p0, p1, . . . , pk}
by the inductive hypothesis. If m = k + 1, then we consider

q −
bk

ak+1,k+1

pk+1.

This is a polynomial of degree µ < k + 1. By the inductive hypothesis, we can write

q −
bk

ak+1,k+1

pk+1 =

k
∑

j=0

cjpj

for some c0, c1, . . . , ck ∈ F . Consequently,

q =

k
∑

j=0

cjpj +
bk

ak+1,k+1

pk+1 ∈ span{p0, p1, . . . , pk+1}.

8



This completes the induction. I guess this is also a good proof, and maybe even better
than the first one.

Problem 8 (sums of subspaces and direct sums of subspaces) Let

V = {(x, y, 0) : x, y ∈ R},

W = {(x, 0, x) : x ∈ R}, and

Z = {(0, y, y) : y ∈ R}

be subspaces in R3.

(a) Find V +W .

(b) Find V + Z.

(c) Find V +W + Z.

(d) Show that V ∩W = V ∩ Z = W ∩ Z = {0}.

(e) Which of the sums in (a-c) are direct sums?

Problem 9 (Axler 2C13) If W1 and W2 are both four-dimensional subspaces of R6,
find the smallest integer n and the largest integer m for which

n ≤ dim(W1 ∩W2) ≤ m,

and justify your answer.

Problem 10 (Axler 2C15) If V is a finite dimensional vector space with dimension
dim(V ) = n, then there are one-dimensional subspaces W1,W2, . . . ,Wn of V such
that

V =
n
⊕

j=1

Wj .
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