Assignment 3 = Exam 1: Finite-Dimensional Vector Spaces Due Tuesday February 15, 2022

John McCuan

January 20, 2022

Problem 1 (Axler 2A1,6) Let v_{1}, v_{2}, v_{3}, and v_{4} be vectors in a vector space V.
(a) Show that if $A=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ spans V, then

$$
B=\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, v_{4}\right\}
$$

spans V
(b) Show that if A is linearly independent, then B is linearly independent.

Problem 2 (Axler 2A2) Verify the following:
(a) A singleton $\{v\}$ containing one vector in a vector space is linearly independent if and only if $v \neq \mathbf{0}$.
(b) A doubleton $\left\{v_{1}, v_{2}\right\}$ containing two vectors in a vector space is linearly independent if and only if neither vector is a scalar multiple of the other.
(c) $\{(1,0,0,0),(0,1,0,0),(0,0,1,0)\}$ is linearly independent in \mathbb{R}^{4}.
(d) $\left\{1, z, z^{2}, \ldots, z^{m}\right\}$ is linearly independent in the vector space of polynomials with complex coefficients $\mathcal{P}(\mathbb{C})$ for every $m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$.

Problem 3 (Axler 2A4,5,12,13)
(a) Find all values of c for which $\{(2,3,1),(1,-1,2),(7,3, c)\}$ is linearly dependent in F^{3}.
(b) Show that $\{1+i, 1-i\}$ is linearly independent in the real vector space \mathbb{C}.
(c) Show the following: If $A=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\}$ is a collection of polynomials in $\mathcal{P}_{4}(F)$, the vector space of polynomials with coefficients in F having degree four or less, then A is linearly dependent.
(d) Show the following: If $B=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ is a collection of polynomials in $\mathcal{P}_{4}(F)$, then

$$
\operatorname{span} B \neq \mathcal{P}_{4}(F)
$$

Problem 4 (Axler 2B2,5) Verify the following:
(a) $\left\{1, z, z^{2}, \ldots, z^{m}\right\}$ is a basis for $\mathcal{P}_{m}(\mathbb{C})$ the vector space of polynomials with complex coefficients and order less than or equal to m.
(b) There exists a basis $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ of $\mathcal{P}_{3}(\mathbb{C})$ such that none of the polynomials $p_{1}, p_{2}, p_{3}, p_{4}$ is of degree 2 .

Problem 5 (Axler 2B7) Prove or disprove: If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of V and W is a subspace of V such that $v_{1}, v_{2} \in W$ and $v_{3} \notin W$ and $v_{4} \notin W$, then $\left\{v_{1}, v_{2}\right\}$ is a basis of W.

Problem 6 (Axler 2C8) Let

$$
W=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): \int_{-1}^{1} p(x) d x=0\right\}
$$

(a) Show that W is a subspace of $\mathcal{P}_{4}(\mathbb{R})$.
(b) Find a basis B for W.
(c) Extend the basis B to a basis A for $\mathcal{P}_{4}(\mathbb{R})$.
(d) Find a subspace V of $\mathcal{P}_{4}(\mathbb{R})$ such that $\mathcal{P}_{4}(\mathbb{R})=W \oplus V$.

Problem 7 (Axler 2C10) Show that if $A=\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{n}\right\} \subset \mathcal{P}(F)$ with $\operatorname{deg}\left(p_{j}\right)=$ j for $j=0,1,2, \ldots, n$, then A is a basis for $\mathcal{P}_{n}(F)$.

Problem 8 (sums of subspaces and direct sums of subspaces) Let

$$
\begin{aligned}
V & =\{(x, y, 0): x, y \in \mathbb{R}\}, \\
W & =\{(x, 0, x): x \in \mathbb{R}\}, \text { and } \\
Z & =\{(0, y, y): y \in \mathbb{R}\}
\end{aligned}
$$

be subspaces in \mathbb{R}^{3}.
(a) Find $V+W$.
(b) Find $V+Z$.
(c) Find $V+W+Z$.
(d) Show that $V \cap W=V \cap Z=W \cap Z=\{0\}$.
(e) Which of the sums in (a-c) are direct sums?

Problem 9 (Axler 2C13) If W_{1} and W_{2} are both four-dimensional subspaces of \mathbb{R}^{6}, find the smallest integer n and the largest integer m for which

$$
n \leq \operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq m
$$

and justify your answer.
Problem 10 (Axler 2C15) If V is a finite dimensional vector space with dimension $\operatorname{dim}(V)=n$, then there are one-dimensional subspaces $W_{1}, W_{2}, \ldots, W_{n}$ of V such that

$$
V=\bigoplus_{j=1}^{n} W_{j} .
$$

