Assignment 3 = Exam 1: Finite-Dimensional Vector Spaces Due Tuesday February 15, 2022

John McCuan

January 20, 2022

Problem 1 (Axler 2A1,6) Let v_1 , v_2 , v_3 , and v_4 be vectors in a vector space V.

(a) Show that if $A = \{v_1, v_2, v_3, v_4\}$ spans V, then

$$B = \{v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4\}$$

spans V

(b) Show that if A is linearly independent, then B is linearly independent.

Problem 2 (Axler 2A2) Verify the following:

- (a) A singleton $\{v\}$ containing one vector in a vector space is linearly independent if and only if $v \neq 0$.
- (b) A doubleton $\{v_1, v_2\}$ containing two vectors in a vector space is linearly independent if and only if neither vector is a scalar multiple of the other.
- (c) $\{(1,0,0,0), (0,1,0,0), (0,0,1,0)\}$ is linearly independent in \mathbb{R}^4 .
- (d) $\{1, z, z^2, \ldots, z^m\}$ is linearly independent in the vector space of polynomials with complex coefficients $\mathcal{P}(\mathbb{C})$ for every $m \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$.

Problem 3 (Axler 2A4, 5, 12, 13)

- (a) Find all values of c for which $\{(2,3,1), (1,-1,2), (7,3,c)\}$ is linearly dependent in F^3 .
- (b) Show that $\{1+i, 1-i\}$ is linearly independent in the real vector space \mathbb{C} .
- (c) Show the following: If $A = \{p_1, p_2, p_3, p_4, p_5, p_6\}$ is a collection of polynomials in $\mathcal{P}_4(F)$, the vector space of polynomials with coefficients in F having degree four or less, then A is linearly dependent.
- (d) Show the following: If $B = \{p_1, p_2, p_3, p_4\}$ is a collection of polynomials in $\mathcal{P}_4(F)$, then

span
$$B \neq \mathcal{P}_4(F)$$
.

Problem 4 (Axler 2B2,5) Verify the following:

- (a) $\{1, z, z^2, ..., z^m\}$ is a basis for $\mathcal{P}_m(\mathbb{C})$ the vector space of polynomials with complex coefficients and order less than or equal to m.
- (b) There exists a basis $\{p_1, p_2, p_3, p_4\}$ of $\mathcal{P}_3(\mathbb{C})$ such that none of the polynomials p_1, p_2, p_3, p_4 is of degree 2.

Problem 5 (Axler 2B7) Prove or disprove: If $\{v_1, v_2, v_3, v_4\}$ is a basis of V and W is a subspace of V such that $v_1, v_2 \in W$ and $v_3 \notin W$ and $v_4 \notin W$, then $\{v_1, v_2\}$ is a basis of W.

Problem 6 (Axler 2C8) Let

$$W = \left\{ p \in \mathcal{P}_4(\mathbb{R}) : \int_{-1}^1 p(x) \, dx = 0 \right\}.$$

- (a) Show that W is a subspace of $\mathcal{P}_4(\mathbb{R})$.
- (b) Find a basis B for W.
- (c) Extend the basis B to a basis A for $\mathcal{P}_4(\mathbb{R})$.
- (d) Find a subspace V of $\mathcal{P}_4(\mathbb{R})$ such that $\mathcal{P}_4(\mathbb{R}) = W \oplus V$.

Problem 7 (Axler 2C10) Show that if $A = \{p_0, p_1, p_2, \ldots, p_n\} \subset \mathcal{P}(F)$ with deg $(p_j) = j$ for $j = 0, 1, 2, \ldots, n$, then A is a basis for $\mathcal{P}_n(F)$.

Problem 8 (sums of subspaces and direct sums of subspaces) Let

$$V = \{(x, y, 0) : x, y \in \mathbb{R}\},\$$

$$W = \{(x, 0, x) : x \in \mathbb{R}\}, \text{ and }\$$

$$Z = \{(0, y, y) : y \in \mathbb{R}\}$$

be subspaces in \mathbb{R}^3 .

- (a) Find V + W.
- (b) Find V + Z.
- (c) Find V + W + Z.
- (d) Show that $V \cap W = V \cap Z = W \cap Z = \{0\}$.
- (e) Which of the sums in (a-c) are direct sums?

Problem 9 (Axler 2C13) If W_1 and W_2 are both four-dimensional subspaces of \mathbb{R}^6 , find the smallest integer n and the largest integer m for which

$$n \le \dim(W_1 \cap W_2) \le m,$$

and justify your answer.

Problem 10 (Axler 2C15) If V is a finite dimensional vector space with dimension $\dim(V) = n$, then there are one-dimensional subspaces W_1, W_2, \ldots, W_n of V such that

$$V = \bigoplus_{j=1}^{n} W_j.$$