Assignment 2: Vector Subspaces Due Tuesday February 1, 2022

John McCuan

January 21, 2022

Problem 1 (Axler 1C3) Let $D^2(-2,2)$ be the collection of twice differentiable real valued functions $f: (-2,2) \to \mathbb{R}$ defined on the interval (-2,2).

- (a) Show that $D^2(-2,2)$ is a subspace of $\mathbb{R}^{(-2,2)}$.
- (b) Show that $V = \{f \in D^2(-2,2) : f''(-1) = 3f'(1)\}$ is a subspace of $D^2(-2,2)$.
- (c) Show $W = \{f \in D^2(-2,2) : f'' = 3f'\}$ is a subspace of $D^2(-2,2)$.
- (d) What is $V \cap W$?

Problem 2 (Axler 1C5) In the lecture I wrote the vector space \mathbb{R}^2 in set notation as

$$\mathbb{R}^2 = \{ (x_1, x_2) : x_1, x_2 \in \mathbb{R} \}.$$
(1)

- (a) Write down the vector space \mathbb{C}^2 in set notation similar to (1).
- (b) Show that $\mathbb{R}^2 \subset \mathbb{C}^2$.
- (c) Is \mathbb{R}^2 a subspace of \mathbb{C}^2 ?

Problem 3 (Axler 1C6) Consider the sets

 $\{(a,b,c)\in \mathbb{R}^3: a^3=b^3\} \qquad \text{and} \qquad \{(a,b,c)\in \mathbb{C}^3: a^3=b^3\}.$

(a) Is $\{(a, b, c) \in \mathbb{R}^3 : a^3 = b^3\}$ a subspace of \mathbb{R}^3 ?

(b) Is $\{(a, b, c) \in \mathbb{C}^3 : a^3 = b^3\}$ a subspace of \mathbb{C}^3 ?

Problem 4 (Axler 1C7) Give an example of a nonempty subset A of \mathbb{R}^2 satisfying

- (i) If $v, w \in A$, then $v + w \in A$,
- (ii) If $v \in A$, then $-v \in A$,

but A is not a subspace of \mathbb{R}^2 .

Problem 5 (Axler 1C8) Give an example of a nonempty subset B of \mathbb{R}^2 satisfying

If $v \in B$ and $a \in \mathbb{R}$, then $av \in B$,

but B is not a subspace of \mathbb{R}^2 .

Problem 6 (Axler 1C9) A function $f : \mathbb{R} \to \mathbb{R}$ with domain and codomain \mathbb{R} is **periodic** if there is some positive number p with f(x + p) = f(x) for all $x \in \mathbb{R}$. Let P be the set of all periodic functions. Is P a subspace of the collection $\mathbb{R}^{\mathbb{R}}$ of all functions with domain and codomain \mathbb{R} ?

Problem 7 (Axler 1C10) Prove that if W_1 and W_2 are subspaces of a vector space V, then $W_1 \cap W_2$ is a subspace of V.

Problem 8 (sums of subspace and direct sums of subspaces)

(a) For each $k = 1, 2, 3, \ldots$ give an example of subspaces V_1, V_2, \ldots, V_k for which

$$V_1 + V_2 + \dots + V_k = \bigoplus_{j=1}^k V_j.$$

(a) For each $k = 3, 4, 5, \ldots$ give an example of subspaces V_1, V_2, \ldots, V_k for which

$$V_j \cap V_\ell = \{\mathbf{0}\}$$
 for $j \neq \ell$,

but

$$V_1 + V_2 + \dots + V_k \neq \bigoplus_{j=1}^k V_j.$$

Problem 9 (Axler 1C23) Prove or give a counterexample: If W_1 , W_2 , and X are subspaces of a vector space V satisfying

$$V = W_1 \oplus X$$
 and $V = W_2 \oplus X$,

then $W_1 = W_2$.

Problem 10 (Axler 1C24) The real vector space $\mathbb{R}^{\mathbb{R}}$ of all functions $f : \mathbb{R} \to \mathbb{R}$ with domain and codomain is the direct sum of the even functions and the odd functions:

$$\mathbb{R}^{\mathbb{R}} = V_{\text{even}} \oplus V_{\text{odd}}$$

where

$$V_{\text{even}} = \{ f \in \mathbb{R}^{\mathbb{R}} : f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}$$

and

$$V_{\text{odd}} = \{ f \in \mathbb{R}^{\mathbb{R}} : f(-x) = -f(x) \text{ for all } x \in \mathbb{R} \}.$$

Hint: Show that [f(x) + f(-x)]/2 is always even.