Assignment 2: Vector Subspaces Due Tuesday February 1, 2022

John McCuan

January 21, 2022

Problem 1 (Axler 1C3) Let $D^{2}(-2,2)$ be the collection of twice differentiable real valued functions $f:(-2,2) \rightarrow \mathbb{R}$ defined on the interval $(-2,2)$.
(a) Show that $D^{2}(-2,2)$ is a subspace of $\mathbb{R}^{(-2,2)}$.
(b) Show that $V=\left\{f \in D^{2}(-2,2): f^{\prime \prime}(-1)=3 f^{\prime}(1)\right\}$ is a subspace of $D^{2}(-2,2)$.
(c) Show $W=\left\{f \in D^{2}(-2,2): f^{\prime \prime}=3 f^{\prime}\right\}$ is a subspace of $D^{2}(-2,2)$.
(d) What is $V \cap W$?

Problem 2 (Axler 1C5) In the lecture I wrote the vector space \mathbb{R}^{2} in set notation as

$$
\begin{equation*}
\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathbb{R}\right\} . \tag{1}
\end{equation*}
$$

(a) Write down the vector space \mathbb{C}^{2} in set notation similar to (1).
(b) Show that $\mathbb{R}^{2} \subset \mathbb{C}^{2}$.
(c) Is \mathbb{R}^{2} a subspace of \mathbb{C}^{2} ?

Problem 3 (Axler 1C6) Consider the sets

$$
\left\{(a, b, c) \in \mathbb{R}^{3}: a^{3}=b^{3}\right\} \quad \text { and } \quad\left\{(a, b, c) \in \mathbb{C}^{3}: a^{3}=b^{3}\right\}
$$

(a) Is $\left\{(a, b, c) \in \mathbb{R}^{3}: a^{3}=b^{3}\right\}$ a subspace of \mathbb{R}^{3} ?
(b) Is $\left\{(a, b, c) \in \mathbb{C}^{3}: a^{3}=b^{3}\right\}$ a subspace of \mathbb{C}^{3} ?

Problem 4 (Axler $1 C 7$) Give an example of a nonempty subset A of \mathbb{R}^{2} satisfying
(i) If $v, w \in A$, then $v+w \in A$,
(ii) If $v \in A$, then $-v \in A$,
but A is not a subspace of \mathbb{R}^{2}.
Problem 5 (Axler 1C8) Give an example of a nonempty subset B of \mathbb{R}^{2} satisfying
If $v \in B$ and $a \in \mathbb{R}$, then $a v \in B$,
but B is not a subspace of \mathbb{R}^{2}.
Problem 6 (Axler 1C9) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ with domain and codomain \mathbb{R} is periodic if there is some positive number p with $f(x+p)=f(x)$ for all $x \in \mathbb{R}$. Let P be the set of all periodic functions. Is P a subspace of the collection $\mathbb{R}^{\mathbb{R}}$ of all functions with domain and codomain \mathbb{R} ?

Problem 7 (Axler 1C10) Prove that if W_{1} and W_{2} are subspaces of a vector space V, then $W_{1} \cap W_{2}$ is a subspace of V.

Problem 8 (sums of subspace and direct sums of subspaces)
(a) For each $k=1,2,3, \ldots$ give an example of subspaces $V_{1}, V_{2}, \ldots, V_{k}$ for which

$$
V_{1}+V_{2}+\cdots+V_{k}=\bigoplus_{j=1}^{k} V_{j} .
$$

(a) For each $k=3,4,5, \ldots$ give an example of subspaces $V_{1}, V_{2}, \ldots, V_{k}$ for which

$$
V_{j} \cap V_{\ell}=\{0\} \quad \text { for } \quad j \neq \ell
$$

but

$$
V_{1}+V_{2}+\cdots+V_{k} \neq \bigoplus_{j=1}^{k} V_{j} .
$$

Problem 9 (Axler 1C23) Prove or give a counterexample: If W_{1}, W_{2}, and X are subspaces of a vector space V satisfying

$$
V=W_{1} \oplus X \quad \text { and } \quad V=W_{2} \oplus X
$$

then $W_{1}=W_{2}$.
Problem 10 (Axler 1C24) The real vector space $\mathbb{R}^{\mathbb{R}}$ of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with domain and codomain is the direct sum of the even functions and the odd functions:

$$
\mathbb{R}^{\mathbb{R}}=V_{\text {even }} \oplus V_{\text {odd }}
$$

where

$$
V_{\text {even }}=\left\{f \in \mathbb{R}^{\mathbb{R}}: f(-x)=f(x) \text { for all } x \in \mathbb{R}\right\}
$$

and

$$
V_{\text {odd }}=\left\{f \in \mathbb{R}^{\mathbb{R}}: f(-x)=-f(x) \text { for all } x \in \mathbb{R}\right\}
$$

Hint: Show that $[f(x)+f(-x)] / 2$ is always even.

