Assignment 12: Eigenvalues and Eigenvectors (Axler Section 5A) Due Tuesday April 26, 2022

John McCuan

April 9, 2022

Problem 1 (eigenvalues and eigenvectors) Given $L: V \to V$ linear, a field element $\lambda \in F$ is an eigenvalue if there is some $v \in V \setminus \{0\}$ for which $Lv = \lambda v$.

Given an eigenvalue $\lambda \in F$, any vector $v \in V \setminus \{0\}$ for which $Lv = \lambda v$ is called an eigenvector of L.

Given an eigenvalue $\lambda \in F$ and a corresponding eigenvector $v \in V \setminus \{0\}$ with $Lv = \lambda v$, the pair

$$(\lambda, v) \in F \times V \setminus \{\mathbf{0}\}$$

is called an eigenvalue/eigenvector pair.

- (a) Let $(\lambda, v) \in F \times V \setminus \{0\}$ be an eigenvalue/eigenvector pair and assume V is finite dimensional.
 - (i) Show that if $\mu \in F \setminus \{\lambda\}$, then $Lv \neq \mu v$.

Recall the identity map $id = id_W : W \to W$ defined on any vector space W by id(w) = w.

- (ii) Show $L \lambda$ id : $V \to V$ is not injective.
- (iii) Show $L \lambda \operatorname{id} : V \to V$ is not surjective.
- (b) Which of the assertions (i)-(iii) of Part (a) above still hold in general even if V is infinite dimensional?

Problem 2 (eigenvalues and eigenvectors) Consider the vector space V of all finite sequences of field elements, that is, V consists of sequences

$$\{a_n\}_{n=1}^{\infty} \subset F$$

for which there is some N such that $a_n = 0$ for all n > N. This vector space is a subspace of $F^{\mathbb{N}}$ and is also sometimes denoted by c_{00} with c denoting the subspace of all convergent sequences and c_0 denoting the subspace of sequences convergent to $0 \in F$. This vector space is also isomorphic to the vector space $\mathcal{P} = \mathcal{P}(F)$ of polynomials with coefficients in F.

- (a) For $j = 1, 2, 3, ..., let \mathbf{e}_j$ denote the element $\{a_n\}_{n=1}^{\infty}$ of V with $a_j = 1$ and $a_n = 0$ for $j \neq n$. Show $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, ...\}$ is a basis for V.
- (b) Consider the linear function $L: V \to V$ defined by

$$L\left(\sum_{j=1}^{k} a_j \mathbf{e}_j\right) = \sum_{j=1}^{k} a_j \mathbf{e}_{j+1}.$$

Show $L - \lambda$ id is not surjective.

(c) Find all eigenvalues and eigenvectors of L.

Problem 3 (Axler 5A7) Find all eigenvalues of $L : \mathbb{R}^2 \to \mathbb{R}^2$ by L(x, y) = (-3y, x).

Problem 4 (Axler 5A8) Find all eigenvalue/eigenvector pairs for $L: F^2 \to F^2$ by L(w, z) = L(z, w).

Problem 5 (Axler 5A9) Find all eigenvalue/eigenvector pairs for $L: F^3 \to F^3$ by $L(z_1, z_2, z_3) = (2z_2, 0, 5z_3).$

Problem 6 (Axler 5A6) If V is a finite dimensional vector space and U is a subspace of V for which

U is invariant with respect to every linear operator $L: V \to V$,

can you prove that either $U = \{\mathbf{0}\}$ or U = V?

Problem 7 (Axler 5A14) If V is a vector space containing proper¹ subspaces U and W for which $V = U \oplus W$, and $L: V \to V$ is defined by

$$L(u+w) = u$$
 for $u \in U$ and $w \in W$,

then find all eigenvalue/eigenvector pairs for L.

Problem 8 (Axler 5A16) Let V be a (finite dimensional) complex vector space with bases \mathcal{B}_1 and \mathcal{B}_2 . Taking the basis \mathcal{B}_1 for V as the domain and \mathcal{B}_2 as the basis for V as the co-domain, assume the matrix $A = (a_{ij})$ of a linear operator $L : V \to V$ with respect to these bases has all entries a_{ij} in the subfield $\mathbb{R} \subset \mathbb{C}$. Assume

$$\lambda + i\mu \in \mathbb{C}$$

with $\operatorname{Re}(\lambda + i\mu) = \lambda \in \mathbb{R}$ and $\operatorname{Im}(\lambda + i\mu) = \mu \in \mathbb{R}$ is an eigenvalue for L. Show the complex conjugate $\lambda - i\mu$ is also an eigenvalue of L.

Problem 9 (Axler 5A25-26) Let $L: V \to V$ be a linear operator.

- (a) If the vectors v, w, and v + w are eigenvectors of L, then show the eigenvalue corresponding to v is the same as the eigenvalue corresponding to w. The fact that there is a unique eigenvalue corresponding to a given eigenvector is the assertion of Problem 1 part (a)(i).
- (b) Show that if every nonzero vector $v \in V$ is an eigenvalue for L, then L is a scalar multiple of the identity operator.

Problem 10 (Axler 5A35-36; quotient operator) If U is a subspace of V, recall that the quotient space V/U is defined as the set of formal symbols v + U where $v \in V$ with elements identified by v + U = w + U when $v - w \in U$.

- (a) Given this definition above and given a linear operator $L: V \to V$, does it make sense to define a linear function $\phi: V/U \to V/U$ by $\phi(v+U) = Lv + U$? Explain why or why not.
- (b) We also had an alternative definition of the elements of V/U with

$$v + U = \{v + u : u \in U\}.$$

¹ "Proper" means in this case the $U \neq \{0\}$ and $U \neq V$, so the same assertions hold also for W.

With this definition, the addition and scaling in V/U are addition and scaling of sets rather than formal symbols, and these are consistent with set addition and scaling defined by

 $A + B = \{a + b : a \in A \text{ and } b \in B\} \quad \text{and} \quad cA = \{ca : a \in A\}.$

Given this definition of V/U does it make sense to define a linear function $\phi: V/U \to V/U$ by $\phi(v+U) = \{Lv + Lu : u \in U\}$? Explain why or why not.

(c) If the subspace $U \subset V$ is an invariant subspace, then we define the induced map on the quotient space $\phi: V/U \to V/U$ by

$$\phi(v+U) = Lv + U.$$

Show the induced map ϕ is well-defined (and linear).

- (d) Assume V is finite dimensional and U is an invariant subspace of V. Prove that if λ is an eigenvalue of the induced map φ : V/U → V/U, then λ is an eigenvalue for L. Hint: Write V = U ⊕ W and consider the characterization given in Problem 1 above.
- (e) Give an example to show the assumption that V is finite dimensional in the previous part is really needed in your proof. Hint: Problem 2 above.