Assignment 12:
 Eigenvalues and Eigenvectors (Axler Section 5A)
 Due Tuesday April 26, 2022

John McCuan

April 9, 2022

Problem 1 (eigenvalues and eigenvectors) Given $L: V \rightarrow V$ linear, a field element $\lambda \in F$ is an eigenvalue if there is some $v \in V \backslash\{0\}$ for which $L v=\lambda v$.

Given an eigenvalue $\lambda \in F$, any vector $v \in V \backslash\{\mathbf{0}\}$ for which $L v=\lambda v$ is called an eigenvector of L.

Given an eigenvalue $\lambda \in F$ and a corresponding eigenvector $v \in V \backslash\{\mathbf{0}\}$ with $L v=\lambda v$, the pair

$$
(\lambda, v) \in F \times V \backslash\{\mathbf{0}\}
$$

is called an eigenvalue/eigenvector pair.
(a) Let $(\lambda, v) \in F \times V \backslash\{0\}$ be an eigenvalue/eigenvector pair and assume V is finite dimensional.
(i) Show that if $\mu \in F \backslash\{\lambda\}$, then $L v \neq \mu v$.

Recall the identity map $\mathrm{id}=\mathrm{id}_{W}: W \rightarrow W$ defined on any vector space W by $\operatorname{id}(w)=w$.
(ii) Show $L-\lambda \mathrm{id}: V \rightarrow V$ is not injective.
(iii) Show $L-\lambda \mathrm{id}: V \rightarrow V$ is not surjective.
(b) Which of the assertions (i)-(iii) of Part (a) above still hold in general even if V is infinite dimensional?

Problem 2 (eigenvalues and eigenvectors) Consider the vector space V of all finite sequences of field elements, that is, V consists of sequences

$$
\left\{a_{n}\right\}_{n=1}^{\infty} \subset F
$$

for which there is some N such that $a_{n}=0$ for all $n>N$. This vector space is a subspace of $F^{\mathbb{N}}$ and is also sometimes denoted by c_{00} with c denoting the subspace of all convergent sequences and c_{0} denoting the subspace of sequences convergent to $0 \in F$. This vector space is also isomorphic to the vector space $\mathcal{P}=\mathcal{P}(F)$ of polynomials with coefficients in F.
(a) For $j=1,2,3, \ldots$, let \mathbf{e}_{j} denote the element $\left\{a_{n}\right\}_{n=1}^{\infty}$ of V with $a_{j}=1$ and $a_{n}=0$ for $j \neq n$. Show $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots\right\}$ is a basis for V.
(b) Consider the linear function $L: V \rightarrow V$ defined by

$$
L\left(\sum_{j=1}^{k} a_{j} \mathbf{e}_{j}\right)=\sum_{j=1}^{k} a_{j} \mathbf{e}_{j+1} .
$$

Show $L-\lambda$ id is not surjective.
(c) Find all eigenvalues and eigenvectors of L.

Problem 3 (Axler 5A7) Find all eigenvalues of $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $L(x, y)=(-3 y, x)$.
Problem 4 (Axler 5A8) Find all eigenvalue/eigenvector pairs for $L: F^{2} \rightarrow F^{2}$ by $L(w, z)=L(z, w)$.

Problem 5 (Axler 5A9) Find all eigenvalue/eigenvector pairs for $L: F^{3} \rightarrow F^{3}$ by $L\left(z_{1}, z_{2}, z_{3}\right)=\left(2 z_{2}, 0,5 z_{3}\right)$.

Problem 6 (Axler 5A6) If V is a finite dimensional vector space and U is a subspace of V for which
U is invariant with respect to every linear operator $L: V \rightarrow V$, can you prove that either $U=\{\mathbf{0}\}$ or $U=V$?

Problem 7 (Axler 5A14) If V is a vector space containing proper ${ }^{1}$ subspaces U and W for which $V=U \oplus W$, and $L: V \rightarrow V$ is defined by

$$
L(u+w)=u \quad \text { for } u \in U \text { and } w \in W
$$

then find all eigenvalue/eigenvector pairs for L.
Problem 8 (Axler 5A16) Let V be a (finite dimensional) complex vector space with bases \mathcal{B}_{1} and \mathcal{B}_{2}. Taking the basis \mathcal{B}_{1} for V as the domain and \mathcal{B}_{2} as the basis for V as the co-domain, assume the matrix $A=\left(a_{i j}\right)$ of a linear operator $L: V \rightarrow V$ with respect to these bases has all entries $a_{i j}$ in the subfield $\mathbb{R} \subset \mathbb{C}$. Assume

$$
\lambda+i \mu \in \mathbb{C}
$$

with $\operatorname{Re}(\lambda+i \mu)=\lambda \in \mathbb{R}$ and $\operatorname{Im}(\lambda+i \mu)=\mu \in \mathbb{R}$ is an eigenvalue for L. Show the complex conjugate $\lambda-i \mu$ is also an eigenvalue of L.

Problem 9 (Axler 5A25-26) Let $L: V \rightarrow V$ be a linear operator.
(a) If the vectors v, w, and $v+w$ are eigenvectors of L, then show the eigenvalue corresponding to v is the same as the eigenvalue corresponding to w. The fact that there is a unique eigenvalue corresponding to a given eigenvector is the assertion of Problem 1 part (a)(i).
(b) Show that if every nonzero vector $v \in V$ is an eigenvalue for L, then L is a scalar multiple of the identity operator.

Problem 10 (Axler 5A35-36; quotient operator) If U is a subspace of V, recall that the quotient space V / U is defined as the set of formal symbols $v+U$ where $v \in V$ with elements identified by $v+U=w+U$ when $v-w \in U$.
(a) Given this definition above and given a linear operator $L: V \rightarrow V$, does it make sense to define a linear function $\phi: V / U \rightarrow V / U$ by $\phi(v+U)=L v+U$? Explain why or why not.
(b) We also had an alternative definition of the elements of V / U with

$$
v+U=\{v+u: u \in U\} .
$$

[^0]With this definition, the addition and scaling in V / U are addition and scaling of sets rather than formal symbols, and these are consistent with set addition and scaling defined by

$$
A+B=\{a+b: a \in A \text { and } b \in B\} \quad \text { and } \quad c A=\{c a: a \in A\}
$$

Given this definition of V / U does it make sense to define a linear function $\phi: V / U \rightarrow V / U$ by $\phi(v+U)=\{L v+L u: u \in U\}$? Explain why or why not.
(c) If the subspace $U \subset V$ is an invariant subspace, then we define the induced map on the quotient space $\phi: V / U \rightarrow V / U$ by

$$
\phi(v+U)=L v+U .
$$

Show the induced map ϕ is well-defined (and linear).
(d) Assume V is finite dimensional and U is an invariant subspace of V. Prove that if λ is an eigenvalue of the induced map $\phi: V / U \rightarrow V / U$, then λ is an eigenvalue for L. Hint: Write $V=U \oplus W$ and consider the characterization given in Problem 1 above.
(e) Give an example to show the assumption that V is finite dimensional in the previous part is really needed in your proof. Hint: Problem 2 above.

[^0]: 1 "Proper" means in this case the $U \neq\{\mathbf{0}\}$ and $U \neq V$, so the same assertions hold also for W.

