
Assignment 11:
Duality (Section 3F) and other topics

Due Tuesday April 19, 2022

John McCuan

April 17, 2022

Problem 1 (real inner product space, Chapter 6) Let V be a vector space over the
field R. A function

〈 · , · 〉 : V × V → R

is an inner product if the following hold

(i) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V . In other words, an inner product must be
symmetric.

(ii) For each fixed w ∈ V he function v 7→ 〈v, w〉 is a linear function on V . This
is called linearity in the first slot. In view of the symmetry condition, an inner
product must be linear in both slots; that is inner product must by bilinear.

(iii) 〈v, v〉 ≥ 0 for every v ∈ V with equality if and only if v = 0. In other words, an
inner product must be positive definite.

(a) Show that if U is any subspace of an inner product space V , then

U⊥ = {v ∈ V : 〈v, u〉 = 0 for all u ∈ U}

is a subspace of V . The space U⊥ is called the orthogonal complement of U
or “U perp” for short.

(b) Show that if V is a finite dimensional inner product space and U is a proper
subspace of U , in this case meaning U 6= {0} and U 6= V , then

V = U ⊕ U⊥.
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(c) Show that U ⊂ U⊥⊥ where U⊥⊥ = (U⊥)⊥ is the double orthogonal comple-
ment of U . Note: This assertions holds even when V (and U) may be infinite
dimensional.

(d) Show that if V is finite dimensional, then

U⊥⊥ = U.

Note: This also holds if U is finite dimensional, even if V is infinite dimen-
sional, and more generally, this holds if U is closed even if U is infinite di-
mensional, but we have not talked about what it means for U to be closed.

Problem 2 (real normed space) Let V be a vector space over the field R. A function

‖ · ‖ : V → [0,∞)

is a norm if the following hold

(i) ‖cv‖ = |c| ‖v‖ for every c ∈ R and v ∈ V . In other words, a norm must be
non-negative homogeneous.

(ii) ‖v+w‖ ≤ ‖v‖+‖w‖ for every v, w ∈ V . This is called the triangle inequality
for the norm.

(iii) ‖v‖ = 0 if and only if v = 0. In other words, a norm must be positive definite.

(a) Given a real inner product space V , show that V is also a real normed space with

‖v‖ =
√

〈v, v〉.

Note: This norm is called the norm induced by the inner product or the
induced norm.

Caution/Hint: Showing (i) and (iii) should be relatively straightforward, but
showing the triangle inequality for the norm may be quite difficult for you if you
haven’t seen it before; you may want to look up the proof in a book or on the
internet.

(b) Show that Rn is a real inner product space (and hence a real normed space) with

〈v,w〉 =
n

∑

j=1

vjwj.

This inner product is called the standard dot product on Rn.

2



(c) Let p1, p2, . . . , pn be positive real numbers. Show that

〈x,y〉∗ =
n

∑

j=1

pjxjyj

defines an inner product on Rn.

(d) In the case (p1, p2, . . . , pn) 6= (1, 1, . . . , 1) ∈ Rn, the inner product in part (c) is
a non-standard inner product. Take n = 2 and draw the unit circle

{x ∈ Rn : ‖x‖∗ = 1}

determined by the norm induced by a non-standard inner product.

Problem 3 (generalized bases and dimension) Recall that if V is a finite dimensional
vector space, then a basis {v1, v2, . . . , vk} of V is defined to be a finite subset of V
which is linearly independent and is a spanning set. With this definition, the
dimension of a finite dimensional vector space is defined to be the number of elements
in a basis. These constructions can be generalized as follows:

Given a vector space X, any subset A ⊂ X is

(i) a spanning set if every vector x ∈ X can be written as a (finite)
linear combination

x =

k
∑

j=1

ajxj

for some vectors x1, x2, . . . , xk ∈ A.

(ii) linearly independent if every (finite) linear combination

k
∑

j=1

ajxj

for some vectors (distinct) x1, x2, . . . , xk ∈ A for which

k
∑

j=1

ajxj = 0

must have a1 = a2 = · · · = ak = 0.
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Note: These definitions do not require the set A to be a finite set.

Given a vector space X, any subset B ⊂ X is a basis if B is a linearly
independent spanning set.

(a) Show that every generalized basis B for a finite dimensional vector space V is a
basis according to the old (finite dimensional) definition of basis.

(b) Show that every basis {v1, v2, . . . , vk} of a finite dimensional vector space V is a
basis in the generalized sense.

(c) Show that if B is a (generalized) basis for a vector space X, then every vector
x ∈ X is written uniquely as a linear combination

x =

k
∑

j=1

ajxj

for some (distinct) vectors x1, x2, . . . , xk ∈ B where the uniqueness holds up to
a reordering of the basis vectors. Hint: Use induction.

Recall that for a finite dimensional vector space V the dual space V ′ is isomorphic
to V . The objective of the next three problems is to suggest how one would go about
showing X ′ is not isomorphic to X when X is infinite dimensional. There are more
interesting things in these problems as well.

Problem 4 (polynomial basis) Remember

P = P(F ) =

{

k
∑

j=0

ajz
j : k ∈ N0 = {0, 1, 2, 3, . . .} and aj ∈ F for j = 0, 1, 2, . . . , k

}

is the vector space of polynomials with coefficients in a field F .

(a) Find a basis for the vector space P = P(F ) of polynomials with coefficients in a
field.

(b) Show the dual space P ′ is isomorphic to FN the vector space of sequences {aj}∞j=1

in F .
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Problem 5 (ordinals) You are familiar with some numbers and some sets of num-
bers. For example N = {1, 2, 3, . . .} is the set of natural numbers, and N0 =
{0, 1, 2, 3, . . .} is the set of natural numbers with zero. Z = {0,±1,±2,±3, . . .}
is the set of integers, Q = {p/q : p ∈ Z and q ∈ N} is the set of rational numbers,
and R is the set of real numbers. Some of the numbers in these sets are ordinal
numbers (and some are not). There are also other ordinal numbers you may not
know about. Here is an introduction:

(i) Ordinal numbers have to do with ordering. In order to talk about ordering, we
reinterpret numbers as sets and say two ordinal numbers a and b satisfy

a < b if a ⊂ b.

This, of course, seems strange, but it’s also rather natural when you get used to
it.

(ii) As a set the number 0 is the first ordinal and it is the empty set. You’ll notice
0 = φ ∈ N0 ∩Z. Thus, 0 and φ are two different names for the same thing: the
first ordinal number.

(iii) The second ordinal number is 1 = {0} = {φ}. Notice that 0 < 1 (by definition)
because 0 = φ ⊂ 1 = {φ}. In fact, 0 = φ is a subset of every ordinal number
because there are no elements in 0.

(iv) As a set/ordinal 2 = {0, 1}, and

k + 1 = {0, 1, 2, . . . , k}.

Thus, all the numbers 0, 1, 2, 3, . . . in N0 are ordinals and they are ordered in
the way you would imagine. These are called the finite ordinals.

(v) Remember that ordering is important for ordinals. Each ordinal is an ordered
set. This means one can compare every two (distinct) elements a and b in an
ordinal ν and either a < b or b < a. A bijection f : ν → µ between ordinals is
said to be order preserving if f(a) < f(b) whenever a < b.

(a) Prove (or at least try to prove or convince yourself) that there does not exist a
bijection between n and m for any (distinct) n,m ∈ N0.

(b) Prove (or at least try to prove or convince yourself) that given any finite set A
there exists exactly one n ∈ N0 for which there exists a bijection f : A → n.
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(c) The first ordinal you may not know about is ω. This ordinal is the smallest
infinite ordinal:

ω = N0 = {0, 1, 2, 3, . . .}

with the obvious ordering. Congratulations: You probably just learned how to
count higher than you ever have before! Show (or at least try to show or convince
yourself) that there does not exist a bijection f : n → ω for any finite ordinal
n ∈ N0. In fact, n < ω for every n ∈ N0.

(d) The next infinite ordinal is ω+1 = N∪ {ω} with the ordering determined by the
condition n < ω for all n ∈ N. Show that ω < ω + 1.

(e) Show there exists a bijection f : ω → ω + 1.

(f) Show there does not exist an order preserving bijection f : ω → ω + 1.

Problem 6 (cardinality and cardinals) You can probably count much higher than you
could before the previous problem:

0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, . . .

with ω + k + 1 = [ω + k] ∪ {ω + k}. It is, of course, possible to count even higher if
you know how:

2ω = ∪∞

k=0(ω + k).

(a) If α and β are among the infinite ordinal numbers mentioned above,1 then there
exists a bijection f : α → β.

(b) Any two sets A and B for which there is a bijection f : A → B are said to have
the same cardinality, or number of elements. If this is the case, we write

#A = #B,

and we say #A is the cardinality of A. Thus, the previous part of this problem
asserts that all the infinite ordinal numbers mentioned so far have the same
cardinality. Also, part (b) of Problem 5 asserts that every finite set has the
cardinality of precisely one finite ordinal. Prove that 2ω, the set of all functions
from ω to 2 = {0, 1} does not have the cardinality of any ordinal mentioned

1Just to be clear, there are other infinite ordinals coming, but these have not been mentioned

above. The ones “mentioned above” at this point are ω, ω + k for k ∈ N, and 2ω.
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above. Hint: Assume there is a bijection f : N → 2ω so that every function
φ : N0 → {0, 1} can be found in a sequence

φ1, φ2, φ3, . . . .

Then construct some other φ : N0 → {0, 1} which is not in the sequence. Thus,
f cannot be surjective.

(c) The previous part of this problem suggests that the set 2ω is rather bigger (in
terms of cardinality) than any of the infinite ordinals mentioned above. Are you
ready to learn to count higher? Yes, 2ω is also an ordinal, but it is a rather
different kind of ordinal: Let O denote the ordinal numbers, then

O = N0 ∪ C ∪ U

where
C ⊃ {ω, ω + 1, ω + 2, . . . , 2ω, 2ω + 1, . . .}

is the set of all ordinals ν for which there is a bijection f : N → ν, and U is the
set of all larger ordinals.

Definition 1 A set A for which there exists a bijection f : A → n for some
ordinal n ∈ N0 is said to have finite cardinality or just simply to be a finite
set. A set A for which A is a finite set or there exists a bijection f : N → A,
i.e., A has the same cardinality as any of the

ω, ω + 1, ω + 2, . . . , 2ω, 2ω + 1, . . . ∈ C

is said to be countable. An ordinal in U , like 2ω, 2ω + 1, 2ω+1 or 3ω, is said
to be uncountable.

Which is the bigger ordinal 2ω+1 or 3ω (or are they the same)?

(d) Here is something interesting:

Ω =
⋂

ν∈U

ν

is an uncountable ordinal called the first uncountable ordinal or the smallest
uncountable ordinal. We can also choose a specific given set, say an ordinal, to
represent the cardinality of any set. Of course, this requires one to be able
to count the elements in an arbitrary set, which is quite an impressive thing
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to be able to do. These representative ordinals are called cardinal numbers.
The cardinal numbers only take account of cardinality but not ordering. We can
(and must) take n ∈ N0 as cardinals for the finite sets. We can choose any
element of C to represent the cardinality of N and N0 and ω. We usually take
ω = N0, but whatever set one chooses this cardinality (as a cardinal number) is
denoted ℵ0.

ℵ0 is representative of the cardinality of every infinite countable ordi-
nal (and set).

While cardinal numbers do not take account of ordering by nature, there is also
an ordering on the cardinal numbers themselves: We say the cardinal numbers γ
and η satisfy γ < η if there is an injection f : γ → η but no injection g : η → γ.
There is also cardinal arithmetic rather like the ordinal arithmetic one
uses to count.

The cardinality of the first uncountable ordinal Ω is called ℵ1. This cardinality is
not representative of the cardinalities of every uncountable ordinal in U . Show
ℵ1 ≤ #R = 2ℵ0. Hint: Binary decimal representation.

It turns out that one has a strange choice at this point: One can either assume

ℵ1 < #R = 2ℵ0 or ℵ1 = #R = 2ℵ0.

The latter assumption is called the continuum hypothesis. The continuum
hypothesis was stated as a conjecture by Georg Cantor in 1878. Paul Cohen
received the fields medal in 1966 for his 1963 proof that either assumption is
possible/consistent. Cohen’s result is called the independence of the contin-
uum hypothesis.

Note: We have not established the assertion above that there are uncountable
ordinals with cardinality greater than ℵ1. Of course, we can choose for this to be
the case (according to Paul Cohen). It can also be proved that ℵ1 < 2ℵ1, which
is rather easier than reading Cohen’s proof.

Problem 7 (infinite dimensions) Let X be a vector space with a (generalized) basis
B. The dimension of X is then defined to be #B, the cardinality of B.

(a) Prove that if X is a vector space with a basis B, then every basis for X has the
same cardinality as B. This means the notion of dimension is well-defined.
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(b) Prove that the dual space P ′ of the vector space of polynomials P considered in
Problem 4 above is not isomorphic to P.

Problem 8 (Axler 3F30) If V is a finite dimensional vector space and {φ1, φ2, . . . , φk}
is a linear independent set in the dual space V ′, then show

dim
(

∩k
j=1N (φj)

)

= dimV − k.

Note: The dual vectors φ1, φ2, . . . , φk are not intended to be any particular “standard”
dual basis vectors.

Problem 9 (Axler 4.5) If k ∈ N and a1, a2, . . . , ak are distinct field elements and
b1, b2, . . . , bk are any field elements, then prove there exists a unique polynomial p ∈
Pm(F ) for which

p(aj) = bj for j = 1, 2, . . . , k.

Problem 10 (Axler 5A1-3) Let L : V → V be a linear function (what Axler calls an
operator). A subspace U ⊂ V is called invariant if the restriction

M = L∣
∣

U

: U → V

has image

Im

(

L∣
∣

U

)

satisfying

Im

(

L∣
∣

U

)

⊂ U.

In this case, we can consider the restriction M : U → U as an operator on U .

(a) Show any subspace of N (L) is invariant.

(b) Show that if U is a subspace for which Im(L) ⊂ U , then U is invariant.

(c) Show that if S, T ∈ L(V → V ) with ST = TS, then N (S) and Im(S) are
invariant subspaces for T .

(d) Define what it means for v ∈ V to be an eigenvector of L, and prove that if U
is a one-dimensional subspace of V , then there exists an eigenvector for L.
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