Assignment 10: Duality (Sections 3F) Due Tuesday April 12, 2022

John McCuan

March 14, 2022

Problem 1 (definition) Let V be a vector space over a field F.
(a) State carefully the definition of the dual space V^{\prime} of V.
(b) Prove that the dual space V^{\prime} is a vector space. Hint: It is a subspace of a known vector space.
(c) Prove $\operatorname{dim} V^{\prime}=\operatorname{dim} V$ (when V is finite dimensional).

Problem 2 (definition) Let V and W be vector spaces and $L \in \mathcal{L}(V \rightarrow W)$ be a linear function.
(a) Define carefully the dual map L^{\prime} of L.
(b) If $M \in \mathcal{L}(V \rightarrow W)$ is another linear function, show $(L+M)^{\prime}=L^{\prime}+M^{\prime}$.
(c) If $a \in F$, show $(a L)^{\prime}=a L^{\prime}$.

Problem 3 (double dual) Let V be a finite dimensional vector space, V^{\prime} the dual space of V, and $V^{\prime \prime}$ the dual space of V^{\prime}. Consider a function $M: V \rightarrow V^{\prime \prime}$ by

$$
M v(\phi)=\phi(v) .
$$

(a) Show M is well-defined.
(b) Show M is linear.
(c) Show M is an isomorphism.

Problem 4 (definition) Let V be a vector space and let S be a subset of V. We define the annihilator of S to be

$$
\mathcal{A}(S)=\left\{\phi \in V^{\prime}: \phi(v)=0 \text { for all } v \in S\right\}
$$

(a) Show $\mathcal{A}(S)$ is a subspace of V^{\prime}.
(b) Notice that we defined the annihilator for general subsets of a vector space rather than for subspaces. Show that there is a subspace W of V such that

$$
\mathcal{A}(W)=\mathcal{A}(S)
$$

(c) Is the subspace W in part (b) of this problem unique?

Problem 5 (Theorem 3.106) Let V be a vector space and W a subspace of V. Define the injection of W into V as the function $i: W \rightarrow V$ by $i(w)=w$.
(a) Show the injection is linear and injective.
(b) Prove

$$
\mathcal{A}(W)=\mathcal{N}\left(i^{\prime}\right)
$$

where $i^{\prime}: V^{\prime} \rightarrow W^{\prime}$ is the dual map of i.
Problem 6 (Axler 3F3) Let V be a finite dimensional vector space, and assume $v \in V \backslash\{\mathbf{0}\}$. Prove there exists some $\phi \in V^{\prime}$ with $\phi(v)=1$.

Problem 7 (Axler 3F4) Let V be a finite dimensional vector space with a proper subspace W. Proper here means $W \neq V$. Prove there exists some $\phi \in V^{\prime} \backslash\left\{0^{\prime}\right\}$ such that

$$
\left.\phi\right|_{W} \equiv 0
$$

Problem 8 (Axler 3F7) Let k be a positive integer and consider the vector space \mathcal{P}_{k} of polynomials of degree at most k. Given the basis

$$
\left\{1, x, x^{2}, \ldots, x^{k}\right\}
$$

for \mathcal{P}_{k}, show the dual basis for \mathcal{P}_{k}^{\prime} is given by $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{k}\right\}$ where

$$
\phi_{j}[p]=\frac{1}{j!} p^{(j)}(0) \quad \text { for } p \in \mathcal{P}_{k} \text { and } j=0,1,2, \ldots, k
$$

Problem 9 (Axler 3F9) Let V be a vector space with basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ be the corresponding dual basis for V^{\prime}. Show that

$$
\phi=\sum_{j=1}^{n} \psi\left(v_{j}\right) \phi_{j} \quad \text { for } \phi \in V^{\prime}
$$

Problem 10 (Axler 3F11) Let $A=\left(a_{i j}\right)$ be a nonzero $m \times n$ matrix.
(a) State carefully the definition of the column rank of A.
(b) State carefully the definition of the row rank of A.
(c) If there exist vectors $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in F^{m}$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in F^{n}$ such that

$$
a_{i j}=a_{i} b_{j},
$$

then what is the column rank of A ?
(d) If there exist vectors $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in F^{m}$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in F^{n}$ such that

$$
a_{i j}=a_{i} b_{j},
$$

then what is the row rank of A ?
(e) If the column rank of A is 1 , then show there exist vectors $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in F^{m}$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in F^{n}$ such that

$$
a_{i j}=a_{i} b_{j} .
$$

(f) If the row rank of A is 1 , then show there exist vectors $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in F^{m}$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in F^{n}$ such that

$$
a_{i j}=a_{i} b_{j} .
$$

