# Assignment 1: Complex Numbers and Vector Spaces Due Tuesday January 25, 2022 

John McCuan

January 10, 2022

Problem 1 (Axler 1A1) Given real numbers $a$ and $b$ find/write

$$
\frac{1}{a+b i}
$$

in the form $x+i y$ for real numbers $x$ and $y$.
Problem 2 (Axler 1A3) Find the square roots of $i$.
Problem 3 Consider the subspace

$$
V=\{t(1+i, 2-i): t \in \mathbb{C}\}
$$

in $\mathbb{C}^{2}$. Is there a point $(3, x)$ in $V$ ?
Problem 4 (Axler 1A11) Consider the subspace

$$
V=\{t(2-3 i, 5+4 i,-6+7 i): t \in \mathbb{C}\}
$$

in $\mathbb{C}^{3}$. Is the point $(12-5 i, 7+22 i,-32-9 i)$ in $V$ ?

Problem 5 At the bottom of page 10 Axler notes that a general field $F$ is a set containing elements 0 and 1 and satisfying the properties listed in the gray box on page 3. More precisely, there are two operations (multiplication and addition) with

1. $a+b=b+a$ and $a b=b a$ for all $a, b \in F$.
2. $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$ for all $a, b, c \in F$.
3. $a+0=0$ and $1 a=a$ for all $a \in F$.
4. For every $a \in F$ there is some $b \in F$ with $a+b=0$.
5. For every $a \in F \backslash\{0\}$ there is an element $b \in F$ with $a b=1$.
6. $a(b+c)=a b+a c$ for all $a, b, c \in F$.

Look up the names of these properties on the top of page 3 and figure out which property you need to prove the following:

Every field $F$ contains an element -1 such that $(-1) a=-a$ for every $a \in F$.
(And prove it.)
Problem 6 (Axler 1B1) Prove that $-(-v)=v$ for every vector $v$ in a vector space $V$ over a field $F$.

Problem 7 (Axler 1B2) Prove that if av $=0$ for $a \in F$ and $v \in V$ (where $F$ is $a$ field and $V$ is a vector space over $F$ ), then $a=0$ or $v=0$. Note: The single symbol 0 is used to denote two different things here, namely the additive identity $0 \in F$ in the field and $0 \in V$ the additive identity in the vector space. Note also that what the symbol is denoting can always be indicated by writing the set to which it belongs, as I have just done. Every time you write 0 in your statement/proof/discussion, make sure to indicate which zero you are writing.

Problem 8 (Definition 1.19 page 12) Show there can be only one additive inverse in a vector space over a field.

Problem 9 (Vector space of functions 1.23 page 14) Let $S$ be any set and denote the set of complex valued functions on $S$ by $V=\mathbb{C}^{S}$. Define operations on $V$ and verify that these make $V$ a complex vector space.

Problem 10 (Axler 1B5) Let $W$ be a set and $F$ be a field with operations of addition in $W$ and scaling of elements of $W$ by elements of $F$ defined such that the following properties hold

1. $u+v=v+u$ for all $u, v \in W$.
2. $(u+v)+w=u+(v+w)$ and $(a b) v=a(b v)$ for all $u, v, w \in W$ and $a, b \in F$.
3. There is an element $0 \in W$ for which $v+0=v$ for every $v \in W$.
4. The scaling $0 v$ (with $0 \in F$ ) is the element $0 \in W$ for every $v \in W$.
5. The scaling $1 v$ (with $1 \in F$ ) is the element $v \in W$ for every $v \in W$.
6. $a(u+v)=a u+a v$ and $(a+b) v=a v+b v$ for all $a, b \in F$ and $u, v \in W$.

Prove that for each $v \in W$, there exists an element $w \in W$ with $v+w=0$. Note carefully which properties of $W$ you need to prove this and which ones can be ignored/omitted.

