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Note: This is copied directly with a few minor changes of notation.

Most texts on probability and statistics include some brief discussion of sets.
I will include some of the standard material usually mentioned with a little more
detail.

There is a mathematical subject (or at least semi-mathematical or sub-
mathematical subject) called set theory. A possible first axiom of set theory
is the axiom of existence:

There exists a set. (1)

Mathematicians were preaching mathematical dogma long before the formula-
tion of the axiom of existence. Apparently none of those mathematicians felt it
necessary to state the axiom (1). Many of them believed in sets. If you believe
in sets too, then the properties, terminology, and notation associated with them
may provide you and another believer with a convenient means of communica-
tion. While it may be cumbersome to start with (1), a review of some of the
things many mathematicians take for granted may be helpful.

1 Belonging and exclusion

The basic property of a set A is the following: One can determine if any “object”
under discussion (which in the mathematical context essentially always means
another set) “belongs” to A. If an “object” x belongs to the set A, we say x is
an element of A and write

x ∈ A. (2)

Otherwise, we should be able to conclude that x is “excluded” from A in which
case we write

x /∈ A (3)

and say x is not an element of A. In situations where it is found that both
(2) and (3) hold for sets x and A, a mathematician traditionally displays a
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strange facial expression and declares the occurrence of a contradiction. Such
occurrences are not to be taken seriously (mathematically) for extended periods
of time.

Definition 1 A set A is a subset of a set B and we write A ⊂ B if

x ∈ A implies x ∈ B (for every x ∈ A).

Definition 2 Two sets A and B are equal if A ⊂ B and B ⊂ A, i.e., if A and
B have precisely the same elements.

2 Sentences and specification

Another submathematical subject we may wish to take for granted is called
logic. This subject involves “statements” or “sentences” σ composed of various
qualifiers,1 conjunctions,2 and implications.3 When a sentence σ depends
on a set x, we may write σ = σ(x) and invoke the axiom of specification:

There exists a subset of A containing precisely the elements in A for
which σ(x) holds (or is “true”).

In this case, we can denote the newly constructed set by

{x ∈ A : σ(x)}

which is read “the set of all x in A for which σ(x) holds.” Incidentally, the
symbol σ is the Greek letter (lower case) “sigma” and may be considered a kind
of equivalent of the English/Roman letter s.
Note: At some point it may be desirable to try to communicate using more or
less formal “proofs” (or strings of reasoning). Using the phrase “by the same
logic” while attempting such a feat is usually frowned upon. From the point
of view of mathematical communication, it is assumed (or imagined) the par-
ticipants are all using one and the same “logic.” The phrase “by the same
reasoning,” or even better “using similar reasoning,” is much preferred. In the
latter it may be imagined logic is essentially universal and reasoning is a par-
ticular arrangement of logical conclusions. Different people are quite capable of
producing (and to a certain extent capable of communicating) distinct arrange-
ments of logical statements. When different people are using possibly different
“logic,” then communication is probably hopeless.

1For example: (for) some, (for) all, not.
2For example, “or” and/or “and.”
3These have the form “if , then ” and/or “

implies .”
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3 Unions, intersections, complements

In set theory there are also unions: If A and B are subsets of a set S, then

A ∪B = {x ∈ S : x ∈ A or x ∈ B}. (4)

Note: Technically, an axiom of unions is “needed” to assert the existence
of the set S in the specification (4). More generally, a superset S is usually
required in any specification. Some indication of why this is the case is suggested
by Exercise 2 below. We may informally write something like {x : σ(x)}, but we
need to be careful to make sure there is some superset to which all the specified
elements belong.

More generally, if C is a family of sets, i.e., a set of sets, each of which is a
subset of a given set S, then there exists a unique set

⋃

A∈C

A = {x ∈ S : x ∈ A for some A ∈ C}.

This set is called the union of C or the union of all A ∈ C. Again, some
version of the axiom of unions is needed in general to assert the existence of the
superset. The union of all A ∈ C is occasionally denoted by ∪C.

Similarly, if C is nonempty, we can specify in S = ∪A∈CA a unique set

⋂

A∈C

A = {x ∈ S : x ∈ A for every A ∈ C}.

This set is called the intersection of the sets A ∈ C.
Note: The intersection may be empty, i.e., may contain no elements. This is
a special set called the empty set and denoted variously by some symbol like
φ or ∅.

Exercise 1 Use the axiom of existence and the axiom of specification to show
there exists a (unique) set φ with no elements.

Exercise 2 Consider

B = {A : A is a set and A /∈ A}.

(a) What happens if B ∈ B?

(b) What happens if B /∈ B?

(c) What do you conclude from your answers to parts (a) and (b) above?

Exercise 3 While we mentioned an axiom of unions, why (do you think) I did
not mention an axiom of intersections?
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4 Cartesian products

The Cartesian product of two sets A and B, denoted A× B is the set of all
ordered pairs (a, b) of elements a ∈ A and b ∈ B. In terms of (the axiom of)
set specification

A×B = {(a, b) : a ∈ A and b ∈ B}. (5)

In the special case where B = A, the Cartesian product of A with itself is
denoted A2. This is how the beloved notation R2 arises for the beloved Cartesian
plane

{(x, y) : x, y ∈ R}

in the beloved subjects of analytic geometry and calculus.
For those who might be curious, an “axiom of products” is not needed. What

is needed, however, is some kind of expression making it clear that the ordered
pair (a, b) is a set—as the only kinds of objects really under consideration in
set theory are sets.4 One possibility is (a, b) = { {a}, {a, b} }. You may puzzle
out for yourself why this might be a good choice and what the superset in (5)
might be.

As you might guess at this point there is a generalization for products along
the following lines: If C is an ordered collection of sets, then

∏

A∈C

A = {(xA) : xA ∈ A}

is the Cartesian product of the sets in C. This construction is most often used
when C is a finite set, i.e., there is some natural number n for which C =
{A1, A2, . . . , An} and

n
∏

j=1

Aj = {(x1, x2, . . . , xn) : xj ∈ Aj for j = 1, 2, . . . , n}.

Technically, the natural numbers N are usually defined after the Cartesian prod-
uct of only “two” sets is defined separately. Only ordered pairs and ordered pairs
of ordered pairs are needed to construct natural numbers which look something
like this:

1 = {φ}, 2 = {φ, {φ}} = {φ, 1}, 3 = {φ, 1, 2}, . . . .

Then one can proceed to define the “larger” products using natural numbers.
Occasionally, we may also consider a countable product of sets which is a

Cartesian product

∞
∏

j=1

Aj = {(x1, x2, x3, . . .) : xj ∈ Aj for j = 1, 2, 3, . . .}

corresponding to a sequence A1, A2, A3, . . . of sets.

4In this regard, a quote from page 1 of the book Naive Set Theory by Paul Halmos
may be of interest: “By way of examples we might occasionally speak of sets of cabbages and
kings, and the like, but such usage is always to be considered as an illuminating parable only,
and not part of the theory. . . ” In reference to Exercise 2 above, one may also wish to consult
Halmos’ “more spectacular” statement at the top of page 7 in the same book.
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5 Complements

Given a fixed superset S, the complement of a set A ⊂ S or the complement
of A with respect to S is

Ac = {x ∈ S : x /∈ A}.

Notice that to use the notation Ac for the complement, the superset S must
be known and/or understood. A more general construction is the relative
complement of A with respect to a set B given by

B\A = {x ∈ B : x /∈ A}.

This (construction) does not require, and the notation B\A does not imply, the
condition A ⊂ B. Some texts use the notation A′ for the complement Ac and
the notation B −A for the relative complement B\A.

6 De Morgan’s laws

There are various “operations” one can use on/apply to pairs and other collec-
tions of sets. Two of the most interesting are De Morgan’s laws:

(A ∪B)c = Ac ∩Bc, and (6)

(A ∩B)c = Ac ∪Bc. (7)

In order to verify or prove De Morgan’s laws, we should use the definition of set
equality. For example, to show De Morgan’s first law (6) we should show

(A ∪B)c ⊂ Ac ∩Bc, and

Ac ∩Bc ⊂ (A ∪B)c.

Thus, we take an element x ∈ (A∪B)c. We then know x /∈ A∪B. This implies
x /∈ A: If x ∈ A, then x ∈ A∪B, and we have a contradiction. Similarly, x /∈ B.
All together, we have x ∈ Ac and x ∈ Bc, and this means x ∈ Ac ∩ Bc which
shows

(A ∪B)c ⊂ Ac ∩Bc.

For the reverse inclusion, we take an element x ∈ Ac∩Bc. We then know x /∈ A
and x /∈ B. Were we to assume

x ∈ A ∪B = {a ∈ S : a ∈ A or a ∈ B},

then we have an immediate contradiction, which means x /∈ A ∪ B so that
x ∈ (A ∪B)c, and

Ac ∩Bc ⊂ (A ∪B)c

as we needed to show. When we complete a proof like this, we can put a special
symbol to wake up all those who have fallen asleep. One possibility is the
following: �
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Exercise 4 Prove De Morgan’s second law.

A note on the use of sets in studying probability: The text Probability and

Statistical Inference by Hogg, Tanis, and Zimmerman which is an introductory
text on probability and statistics contains the hopelessly absurd suggestion that
“in studying probability the words set and event are interchangeable” (italics
in the original). Hopefully, it is somewhat clear from the presentation above
that sets are mathematical constructions, i.e., imaginary or linguistic pictures,
based perhaps on some axiomatic set theory. The notion may be extended
informally, or as a kind of parable, to sets of actual physical objects, e.g., sets
of cabbages and kings. Events are something quite different. Certainly, one
might informally imagine a collection of events, things that actually happen in
the real physical world, as a set and consequently a subset of such a set of events
as somehow an “event” itself—and thus a set. Even embracing such confusing
and useless informality, there are other (informal) sets, like a set of cards, that
are not events.

A much more natural approach to “studying probability,” if such a thing is
actually to be considered, is to say that events may be modeled by sets.
That is to say, one can impose, or propose, some kind of correspondence and
comparison between some events and certain sets. The sets may be imagined to
provide some kind of mathematical model for events, but the words “set” and
“event” are (clearly) not (or at least clearly should not be made) interchange-
able.

7 Cardinality

Roughly speaking the cardinality of a set is the number of elements in the set.
This works quite well for sets with finite cardinality, that is sets which can be
put in one-to-one correspondence with a natural number (in the set theoretic
sense) or a particular specified set concerning which there is general agreement
about the number of elements contained in it. Recall that the natural numbers

N = {1, 2, 3, . . .}

are supposed to be a collection of sets having this property with 1 = {φ} having
one element, 2 = {φ, 1} having two elements, 3 = {φ, 1, 2}, and so on. To make
this more precise, we need a solid definition of a one-to-one correspondence
which can be found in the next section/appendix.

Assuming you know about functions and bijections, e.g., from the next sec-
tion/appendix, we say a set A has cardinality 1 if there is a one-to-one corre-
spondence f : A → 1. In this case we write

#A = 1.

Similarly, a set A has cardinality n ∈ N and we write #A = n if there is a
one-to-one correspondence f : A → n.
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Definition 3 A set A is said to have finite cardinality if #A = n ∈ N, that
is, there exists some natural number n ∈ N and a bijection f : A → n.

It may not quite make sense to say sets which do not have finite cardinality
“have the same number of elements,” but our basic definition of cardinality can
be extended to “larger” sets. Specifically, two sets A and B are said to have the
same cardinality and we write #A = #B if there exists a bijection f : A → B.
In particular, the set N = {1, 2, 3, . . .} does not have finite cardinality, but N

serves as a standard set with respect to cardinality: A set A is said to be
countably infinite or just countable and we write #A = ℵ0 if there is a
bijection f : A → N.

Much more can be said on this subject. For the time being, let it suffice to
observe that to count the number of elements in a set of finite cardinality is to
determine the cardinality of that set. We consider some techniques for counting
the number of elements in various sets of finite cardinality in Appendix C.

8 Sets of numbers

The construction of various sets of numbers may be considered part of set theory.
These sets are probably familiar to you and the details are (or turn out to
be) relatively complicated. For these reasons, I will not discuss the details,
but simply give a list of the sets with their names and standard symbols for
reference.

natural numbers N = {1, 2, 3, . . .}

natural numbers with zero N0 = {0, 1, 2, 3, . . .}

integers Z = {0,±1,±2,±3, . . .}

rational numbers
Q =

{m

n
: m ∈ Z and n ∈ N

}

real numbers R

Note: This set of numbers while very familiar is quite complicated to
define precisely and simply. You may know R as “the real line” or “the
interval from −∞ to ∞.” Here are some properties which should agree
with what you know about R:

(i) Q ⊂ R. In fact, N ⊂ N0 ⊂ Z ⊂ Q.

(ii) (ordering) Given a, b ∈ R exactly one of the following holds: a < b,
a = b, or a > b. The sets N, N0, Z, and Q all have an order like this
as well.

(iii) (Archimedean property) For each a ∈ R, there is some b ∈ R with
b > a. The sets N, N0, Z, and Q all satisfy the Archimedean property
as well.
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(iv) (Dedekind completeness) If B ⊂ R is nonempty and bounded above,
i.e., there is some M ∈ R for which b ≤ M for every b ∈ B, then
there exists a least upper bound m ∈ R for the set B, i.e., b ≤ m
for every b ∈ B and if b ≤ α for every b ∈ B, then m ≤ α.

Exercise 5 Which of the sets N, N0, Z, and Q are Dedekind com-
plete?

extended real numbers

[−∞,∞] = {x ∈ R} ∪ {±∞} and (−∞,∞] = {x ∈ R} ∪ {∞}.

You may contemplate which properties ofR extend to [−∞,∞] and (−∞,∞].
Notably, addition extends to (−∞,∞] but not to [−∞,∞], though we
didn’t address the algebraic properties of any of these sets of numbers,
like the existence of an operation of addition.

complex numbers
C = {a+ bi : a, b ∈ R}

Note that R ⊂ C, and C is not ordered. In particular, C cannot satisfy
the Archimedean property, nor can C be considered Dedekind complete.
The set C does inherit some related properties from R. In particular, C is
metrically complete. I will not discuss what this means, but you can
think about it (or look it up).

All the sets of numbers we will use are subsets of C and most are subsets of R. I
will mention two more sets of numbers which may be of interest. The algebraic
numbers are numbers ζ ∈ C such that there exists a polynomial

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

with n ∈ N\{0} with p(ζ) = 0. The transcendental numbers are the com-
plement of the algebraic numbers (with respect to C).
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