
Final Assignment: Intro. Probability and Statistics

Due October 24, 2023

John McCuan

Problem 1 (asymptotics; Jeremy Mahoney’s project) A function f : N → R is said
to approach a limit as n tends to ∞ and we write

lim
nր∞

f(n) = L

if there exists some real number L for which the following holds:

Given any ǫ > 0, there is some N > 0 for which

|f(n)− L| < ǫ whenever n > N .

Many functions f : N → ∞ satisfy

lim
nր∞

f(n) = +∞. (1)

For such functions one sometimes still wishes to make quantitative statements. Some
examples of statements which can sometimes be made and the associated notation
are given below. Most often such statements ultimately rely on the definition of limit
given above, so it is important to understand that definition well.

Definition 1 We say f : N → ∞ is asymptotic to zero order to g : N → ∞ at
infinity if

lim
nր∞

|f(n)− g(n)| = 0.

Definition 2 We say f : N → ∞ is “little-o” of g : N → ∞ as n ր ∞ and write
f(n) = ◦(g(n)) as n ր ∞ if

lim
nր∞

f(n)

g(n)
= 0.

1



Definition 3 We say f : N → ∞ is “big-o” of g : N → ∞ as n ր ∞ and write
f(n) = ©(g(n)) as n ր ∞ if there is some constant C and some constant N for
which

∣

∣

∣

∣

f(n)

g(n)

∣

∣

∣

∣

< C whenever n > N .

Definition 4 Given p > 0 and g : N → ∞ with

lim
nր∞

g(n) = +∞,

we say f : N → ∞ is asymptotic of order p to g at infinity as n ր ∞ if

|f(n)− g(n)| = ◦(np).

(a) Notice I did not define the limit in (1). Can you give a precise definition of what
this means? (Try to formulate your answer/definition based on the definition
of limit to a finite value given above without looking up the definition from
another source.)

(b) If k ∈ N is fixed and f : N → R by

f(n) =
n!

(n− k)!
(2)

and g : N → R by
g(n) = nk, (3)

show the following:

(i)
lim
nր∞

f(n) = +∞.

(ii)
lim
nր∞

g(n) = +∞.

(iii)
lim
nր∞

[g(n)− f(n)] = +∞.

(c) If f is asymptotic of order p to g as n ր ∞ and q > p, then show f is asymptotic
or order q to g as n ր ∞.
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(d) With f, g : N → R given by (2) and (3) show the following

(i) f is not asymptotic to zero order to g as n ր ∞.

(ii) f is asymptotic of order k to g as n ր ∞ and therefore,

lim
nր∞

∣

∣

∣

∣

f(x)

g(x)
− 1

∣

∣

∣

∣

= 0.

(e) If f : N → R satisfies
lim
nր∞

f(n) = L,

then is it true that f is asymptotic to zero order to L, i.e., to the constant
function g : N → R with g(n) ≡ L, as n ր ∞?

(f) If f : N → R is asymptotic to zero order to g : N → R as n ր ∞, then is it true
that

lim
nր∞

f(n) = g(n)?

(g) With f, g : N → R given by (2) and (3) can you determine for which m ∈ N

there holds
g(n)− f(n) = ©(nm) as n ր ∞?
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Problem 2 (length measures cannot measure all sets; Keegan Thompson’s project)
Complete the steps outlined below1 in showing it is impossible to have a translation
invariant length measure on the interval [0, 1) with domain the collection ℘([0, 1)) of
all subsets of [0, 1).

Recall the argument is by contradiction. It is assumed

µ : ℘([0, 1)) → [0, 1] (4)

is a measure having the following two properties:

(L) If I is any interval in [0, 1), meaning I has one of the following forms:

(a, b) = {x : a < x < b} for some a, b ∈ [0, 1) with a < b,

[a, b) = {x : a ≤ x < b} for some a, b ∈ [0, 1) with a < b,

(a, b] = {x : a < x ≤ b} for some a, b ∈ [0, 1) with a < b, or

[a, b] = {x : a ≤ x ≤ b} for some a, b ∈ [0, 1) with a ≤ b,

then µ(I) = length(I) = b− a.

(T) If A ⊂ [0, 1) and t ∈ R and {x+ t : x ∈ A} ⊂ [0, 1), then

µ({x+ t : x ∈ A}) = µ(A).

A measure satisfying (L) is said to be a length measure. A measure satisfying (T)
is said to be translation invariant.

(a) We have introduced (really) three kinds of measures in this course:

(i) adolescent measures (including baby measures which are a special case of
adolescent measures),

(ii) abstract measures, and

(iii) integral measures on intervals in R.

We have focused on the special cases of (i) and (iii) which are probability mea-
sures. The abstract measures (ii), which you may not have thought about too

1This material is from the book Real Analysis by Halsey Royden, who incidentally was one of my

teachers in graduate school and cured me from any youthful interest in the subject of topological

vector spaces. Royden’s construction of a non-measurable set, however, I find to be quite inspiring.
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much, are important because integral measures are constructed using integra-
tion with respect to (one dimensional) Lebesgue measure which was introduced
as an abstract measure on subsets of R. The concept of an abstract measure is
also the important one for this problem:

(i) Write down carefully the definition of an (abstract) measure. Hint: This
can be found in Chapter 4 on page 200 of my notes.

(ii) In the application of your definition to the assumption of the existence of
the translation invariant length measure in (4) what set plays the role of
the σ-algebra?

(b) An equivalence relation on a set S is any subset R of S × S for which the
following hold

(i) (x, x) ∈ R for all x ∈ S,

(ii) If (x, y) ∈ R, then (y, x) ∈ R, and

(iii) If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

Property (i) is called the reflexive property and is usually expressed by writing
x ∼ x, where the equivalence relation is informally represented by the notation
“∼.” Similarly, an equivalence relation is said to be symmetric if (ii) holds,
and this is informally expressed by writing

x ∼ y =⇒ y ∼ x.

The third property is called the transitive property:

x ∼ y and y ∼ z =⇒ x ∼ z.

Most of the time when you use the symbol “=” in mathematics, it is denoting
some equivalence relation. For example, “n=m” represents the equivalence
relation of equality on the natural numbers, meaning the sets representing the
natural numbers m and n have the same number of elements. The same
symbol “=” is used to represent the relation of set equality in ℘(S) where
A = B means the sets A and B have the same elements. These are two
different equivalence relations with which you are familiar, and you can check
that each is reflexive, symmetric, and transitive.
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Show that any time one has an equivalence relation “∼” on a set S, then the
collection

P =
{

{y ∈ S : y ∼ x} : x ∈ S
}

is a partition of S. Each set Ax = {y ∈ S : y ∼ x} is called the equivalence
class of x ∈ S, and what you need to show is that either two equivalence classes
Ax and Aw are disjoint, i.e., Ax ∩ Aw = φ, or identical, i.e., Ax = Aw. Hint:
Remember that in order to show two sets are equal, you need to show each is a
subset of the other.

(c) (rational equivalence) Let Q denote the rational numbers

Q =
{m

n
: n ∈ N = {1, 2, 3, . . .} and m ∈ Z = {0,±1,±2,±3, . . .}

}

.

Show x ∼Q y if x− y ∈ Q defines an equivalence relation on [0, 1).

As a consequence of parts (b) and (c) above, the equivalence classes

{

Ax = {y ∈ [0, 1) : y ∼Q x} : x ∈ [0, 1)
}

,

where “∼Q” represents rational equivalence, are a partition of [0, 1).

Of course, it may be the case that Ax = Ay for elements x, y ∈ [0, 1) with x 6= y.
In the application below, however, we use a particular index set J ⊂ [0, 1) for
which

{

Ax : x ∈ [0, 1)
}

= {Ax : x ∈ J}
and Ax = Ay for x, y ∈ J implies x = y. That is to say, the set J ⊂ [0, 1)
contains exactly one element from each equivalence class.2

(d) (mod 1 addition) The function m : [0, 1)× [0, 1) → [0, 1) given by

m(x, y) =

{

x+ y, if x+ y < 1
x+ y − 1, if x+ y ≥ 1

2Technically, the existence of this set J follows from an application of the axiom of choice.

Strange though it may seem, the existence of such a set J also implies the axiom of choice and is

thus equivalent to the axiom of choice. More generally, one says the following: The existence of a

non-measurable set is equivalent to the axiom of choice.

6



is called mod 1 addition. Recall that the rational numbers Q are countable.
This means there is a bijection r : N → Q. Let us denote the image r(j) of each
natural number j under this bijection is denoted by rj so that

Q = {rj}∞j=1.

You should now think: r1 is the first rational number, r2 is the second rational
number, and so on.

For each j = 1, 2, 3, . . ., consider the “rj shuffle” of J defined by

Ej = {m(x, rj) : x ∈ J}.

(i) Draw a picture of the set Ej. (You’ll have to be creative about how to
illustrate/draw the set J because no one knows what J actually looks
like.)

(ii) Use translation invariance to show µ(Ei) = µ(Ej) for every i, j ∈ N.

(iii) Show Ei ∩ Ej = φ if i 6= j.

(iv) Show
∞
⋃

j=1

Ej = [0, 1).

Hint: If x ∈ [0, 1), there is some x0 ∈ J for which Ax0
= Ax. That is,

x− x0 ∈ Q.

(e) As a consequence of (d)(iii) and (d)(iv) the collection {Ej}∞j=1 is a countable
partition of [0, 1). Also, by (d)(ii) each set Ej has the same measure. Use
the countable additivity from your definition of (abstract) measure to obtain
a contradiction showing it is impossible to measure all subsets of [0, 1) with a
length measure.

(f) Which set in the discussion above would you identify as the “non-measurable
set?”

(g) Replace the non-measurable set you identified in part (f) with a measurable set,
say [1/4, 3/4] ⊂ [0, 1).

(0) Construct a sequence of sets F1, F2, F3, . . . corresponding to the rational
shuffles of [1/4, 3/4].
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(i) Draw a picture of the set Fj . Now you can see the picture clearly, but you
should get different cases depending on which rational rj is involved.

(ii) Is it still true that µ(Fi) = µ(Fj) for every i, j ∈ N? If so, why? If not,
does equality hold for some rationals ri 6= rj? Can you characterize the
cases of failure?

(iii) Is it still true that Fi ∩ Fj = φ if i 6= j? If so, why? If not, are the sets Fi

and Fj disjoint for some rationals ri 6= rj? Can you characterize the cases
of failure?

(iv) Is it still true that
∞
⋃

j=1

Fj = [0, 1) ?

(v) Why is there no contradiction in this case?

(h) Can you think of a different choice for the measurable set in part (g) above
making the discussion of part (g) more interesting? How about a Cantor set?
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Problem 3 (Chebyshev inequality; inspired by Ansel Erol’s probability project) Let
δ : R → [0,∞) be a probability density (MDF) for which the mean

µ =

∫

ω∈R

ω δ(ω)

and the variance

σ2 =

∫

ω∈R

(ω − µ)2 δ(ω) (5)

are well-defined. Let σ =
√
σ2 denote the standard deviation of the measure de-

termined by δ and let k > 0 be a fixed (proportionality) constant. Chebyshev’s
inequality states that under these assumptions

∫

{τ∈R:|τ−µ|<kσ}

δ ≥ 1− 1

k2
. (6)

The objective of this problem is to walk you through a proof of this inequality. I will
begin with an auxiliary inequality which is a special case of the inequality in Lemma 1
(the McMarkov lemma) of Problem 10 in Assignment 9. I will give the derivation of
this inequality which we can call the Chevy inequality:

∫

ω∈R

(ω − µ)2 δ(ω) ≥ k2σ2

∫

{τ∈R:|τ−µ|≥kσ}

δ. (7)

Here is the derivation:
∫

ω∈R

(ω − µ)2 δ(ω) ≥
∫

ω∈{τ∈R:(τ−µ)2≥k2σ2}

(ω − µ)2 δ(ω) (8)

≥
∫

ω∈{τ∈R:(τ−µ)2≥k2σ2}

k2σ2δ(ω) (9)

= k2σ2

∫

ω∈{τ∈R:(τ−µ)2≥k2σ2}

δ(ω) (10)

= k2σ2

∫

ω∈{τ∈R:|τ−µ|≥kσ}

δ(ω) (11)

= k2σ2

∫

{τ∈R:|τ−µ|≥kσ}

δ. (12)

The reasoning behind each step is as follows:
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1. (8) follows because the integrand is everywhere non-negative and the integral
on the right is over a potentially smaller set.

2. (9) follows because (ω − µ)2 ≥ k2σ2 for ω in the (smaller) set

{τ ∈ R : (τ − µ)2 ≥ k2σ2}.

3. (10) is the linearity of the integral.

4. (11) is a consequence of the fact that

{τ ∈ R : (τ − µ)2 ≥ k2σ2} and {τ ∈ R : |τ − µ| ≥ kσ}
are the same set.

5. (12) is just a change of notation because the variable of integration ω need no
longer appear in the integrand.

Complete steps (a)-(d) to derive Chebyshev’s inequality (6):

(a) Divide both sides of the Chevy inequality (7) by k2σ2 and reverse the order to
get an estimate from above on the integral

∫

{τ∈R:|τ−µ|≥kσ}

δ. (13)

(b) Replace the integral (13) appearing in your inequality from part (a) using the
value of

∫

{τ∈R:|τ−µ|<kσ}

δ +

∫

{τ∈R:|τ−µ|≥kσ}

δ.

(c) Replace the other integral appearing in your inequality from part (a) with its
value from (5).

(d) Algebraically simplify and rearrange what you have to complete the derivation.

(e) If one believes in “probability” and “random variables,” which probably no one
should, then Chebyshev’s inequality (6) may be rephrased as an inequality
involving such things:

• How would a random variableX be introduced with values probabilistically
related to δ?

• Within this framework, how would Chebychev’s inequality (6) be expressed?
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