Assignment 8: Statistics Due November 21, 2023

John McCuan

Recall the measurements in inches for the length of Milkyway minis from Assignment 7:

0.88 1.04 0.77 1.11 0.88 1.04 0.89 0.90 0.97 0.90 1.14 0.96 1.10 1.02 0.94 0.75 0.82 0.83 0.94 1.02 0.90 0.62 0.89 0.88 0.81 1.01 0.82 0.67 0.96 0.89 0.90 0.92 1.02 0.79 0.96 0.80 0.91 0.99 0.72 1.02 0.83 0.90 0.95 1.03 0.78 0.79 0.94 0.85 0.86 0.98

Problem 1 (sample mean and sample variance) The **sample mean** of a collection of continuous type data $\ell_1, \ell_2, \ldots, \ell_n$ like the Milkyway minis lengths, is just the avarage of the values:

$$\bar{\ell} = \frac{1}{n} \sum_{j=1}^{n} \ell_j.$$

The **sample variance** is defined to be the number

$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (\ell_{j} - \bar{\ell})^{2}.$$

The sample standard deviation is defined to be $s = \sqrt{s^2}$.

(a) Find the sample mean of the Milkyway mini data.

(b) Find the sample variance of the Milkyway mini data.

(c) Find the sample standard deviation of the Milkyway mini data.

Problem 2 (sample variance versus emperical variance) The number

$$\nu^{2} = \frac{1}{n} \sum_{j=1}^{n} (\ell_{j} - \bar{\ell})^{2}$$

is called the **emperical** (distribution) variance associated with the continuous type sample data ℓ_1, \ldots, ℓ_n .

- (a) Simulate Milkyway minis lengths using the command rnorm(50, mean = ℓ, sd = s) in R.
- (b) Simulate Milkyway minis lengths using the command
 - rnorm(50, mean = $\bar{\ell}$, sd = ν) where $\nu = \sqrt{\nu^2}$ in R.
- (c) Does one value give a better simulation than the other? What is the basic difference between the sample standard deviation s and the emperical deviation ν ? Why do you think one might be used instead of the other?

Problem 3 (sample variance) Both the sample variance and the emperical variance involve the quantity¹

$$\sum_{j=1}^{n} (\ell_j - \bar{\ell})^2.$$

(a) Show

$$\sum_{j=1}^{n} (\ell_j - \bar{\ell})^2 = \sum_{j=1}^{n} \ell_j^2 - \frac{1}{n} \left(\sum_{j=1}^{n} \ell_j \right)^2.$$

(b) Show

$$\nu^2 = -\bar{\ell}^2 + \frac{1}{n} \sum_{j=1}^n \ell_j^2.$$

¹The alternative expressions in this problem can be easier to calcualate (by hand) and also can incur less round off error when calculated using a computer.

(c) Show

$$s^{2} = \frac{1}{n-1} \left[-\frac{1}{n} \left(\sum_{j=1}^{n} \ell_{j} \right)^{2} + \sum_{j=1}^{n} \ell_{j}^{2} \right] = \frac{1}{n-1} \left[-\frac{1}{n} \left(\sum_{j=1}^{n} \ell_{j} \right)^{2} + n(\nu^{2} + \bar{\ell}^{2}) \right].$$

Problem 4 (histogram) A data histogram is not always constructed using a stemand-leaf display as presented in Assignment 7. More generally, one can specify values $c_0 < c_1 < \cdots < c_k$ determining class intervals

$$(c_0, c_1], (c_1, c_2], \ldots, (c_{k-1}, c_k]$$

whose union contains all the data. The numbers c_0, \ldots, c_k are called **class bound**aries and the midpoints

$$a_j = \frac{c_j + c_{j-1}}{2}, \qquad j = 1, 2, \dots, k$$

are called **class marks**. With each class is associated a frequency f_j , j = 1, ..., k which may be plotted above the class mark or as the height in a bar graph over the class itself. The result is a generalization of the histogram(s) consideed in Assignment 7.

Consider the following² ordered data:

2	2	2	2	2	2	2	2	2	2
2	2	3	3	3	3	4	4	4	5
5	5	5	6	6	6	6	8	8	9
15	17	22	23	24	24	25	27	32	43

- (a) Create/draw a histogram with class boundaries 1.5, 2.5, 6.5, 29.5, 49.5.
- (b) Is the length of each frequency proportional to the height of the histogram class in the sense that for some fixed $\alpha \in \mathbb{R}$

$$f_j = \alpha(c_j - c_{j-1}), \qquad j = 1, 2, \dots, k$$
?

(c) Create/draw a histogram for the relative frequencies.

²This "colorful" data comes from the text *Probability and Statistical Inference* by Hogg, Tanis, and Zimmerman. It is supposed to represent the costs of property losses in millions of dollars.

(d) Find a formula for the relative frequency r_j , j = 1, 2, ..., k associated with each class $(c_{j-1}, c_j]$ in terms of the frequency f_j , the class boundaries and the number n of sample data points.

Problem 5 (modal class) The **modal class** associated with a general frequency histogram is the class with the largest frequency. The **mode** of the data is the class mark of the modal class.

- (a) Find the modal class for the frequency histogram you found in part (a) of Problem 4 above.
- (b) Find the mode of the data in Problem 4 above.
- (c) Show the mode depends not only on the data but also on the choice of class boundaries.

Problem 6 (sample PMF) The relative frequency histogram values r_1, r_2, \ldots, r_k associated with the class marks a_1, a_2, \ldots, a_k are sometimes said to constitute the **sample PMF**. Under what conditions can one expect the sample PMF to be proportional to the frequency histogram (function)?

Problem 7 (binomial experiments and frequency) In the framework/terminology of Problems 8 and 9 of Assignment 6 consider the following two data descriptions:

- (i) One hundred experiments consisting of one Bernoulli trial each.
- (ii) One experiment consisting of one hundred Bernoulli trials.
- (a) Which description describes the output tottrials of the R command tottrials <- rbinom(100,1,rbinom(100,10,0.6)/10) from Problem 10 of Assignment 6?
- (b) Compose an R command producing data totexp corresponding to the description from among (i) and (ii) above which is not the answer to part (a).
- (c) Assuming you used (only) the base probability prob = 0.6 in the function rbinom in composing your answer to part (b), can you tell the difference between tottrials and totexp? If so, how?

Problem 8 (simulated probabilities) Here is a data set, call it data set A, containing 90 samples:

 $\begin{bmatrix} 1 \end{bmatrix} 0.57 \ 0.59 \ 0.68 \ 0.60 \ 0.61 \ 0.69 \ 0.62 \ 0.54 \ 0.57 \ 0.58 \ 0.66 \ 0.62 \ 0.62 \ 0.61 \ 0.57 \\ \begin{bmatrix} 16 \end{bmatrix} 0.69 \ 0.62 \ 0.50 \ 0.64 \ 0.58 \ 0.55 \ 0.59 \ 0.55 \ 0.56 \ 0.57 \ 0.52 \ 0.64 \ 0.61 \ 0.54 \ 0.66 \\ \begin{bmatrix} 31 \end{bmatrix} 0.62 \ 0.59 \ 0.64 \ 0.64 \ 0.64 \ 0.63 \ 0.63 \ 0.60 \ 0.58 \ 0.58 \ 0.57 \ 0.59 \ 0.54 \ 0.71 \ 0.66 \\ \begin{bmatrix} 46 \end{bmatrix} 0.54 \ 0.58 \ 0.58 \ 0.58 \ 0.64 \ 0.60 \ 0.61 \ 0.60 \ 0.60 \ 0.67 \ 0.59 \ 0.68 \ 0.52 \ 0.63 \ 0.61 \ 0.61 \\ \begin{bmatrix} 61 \end{bmatrix} 0.62 \ 0.57 \ 0.58 \ 0.55 \ 0.55 \ 0.62 \ 0.62 \ 0.62 \ 0.65 \ 0.57 \\ \begin{bmatrix} 76 \end{bmatrix} 0.65 \ 0.59 \ 0.54 \ 0.61 \ 0.59 \ 0.60 \ 0.62 \ 0.58 \ 0.59 \ 0.62 \ 0.65 \ 0.62 \ 0.58 \ 0.65 \\ \end{bmatrix}$

A second data set, call it data set B, is the following:

 $\begin{bmatrix} 1 \end{bmatrix} 0.52 0.58 0.55 0.66 0.54 0.59 0.50 0.62 0.61 0.56 0.72 0.71 0.64 0.57 0.63 \\ \begin{bmatrix} 16 \end{bmatrix} 0.61 0.60 0.59 0.59 0.58 0.56 0.66 0.62 0.67 0.52 0.64 0.60 0.70 0.61 0.57 \\ \begin{bmatrix} 31 \end{bmatrix} 0.64 0.60 0.58 0.59 0.61 0.46 0.61 0.62 0.59 0.55 0.59 0.59 0.57 0.57 0.46 \\ \begin{bmatrix} 46 \end{bmatrix} 0.63 0.62 0.57 0.62 0.66 0.61 0.65 0.61 0.67 0.61 0.60 0.55 0.63 0.58 0.61 \\ \begin{bmatrix} 61 \end{bmatrix} 0.53 0.62 0.70 0.55 0.67 0.56 0.60 0.52 0.60 0.60 0.60 0.71 0.61 0.61 0.58 \\ \begin{bmatrix} 76 \end{bmatrix} 0.56 0.69 0.57 0.64 0.72 0.67 0.60 0.61 0.62 0.57 0.58 0.57 0.58 0.57 \\ \end{bmatrix}$

(a) One of the data sets above was generated using the R command

round(rnorm(90,0.6,0.05),digits = 2)

The other was generated using

rbinom(90,100,0.6)/100

Can you tell which is which? If so, how? If not, why?

(b) Compute the mean and variance of the discrete measure associated with

rbinom(90,100,0.6)/100.

The steps on the next page are intended to walk you through this calculation if you need hints.

- (i) Let β : P({0,1,2,...,100}) → [0,1] denote the binomial induced measure. Define a new measure π : P({0,0.1,0.2,...,1}) → [0,1] corresponding to the sampling values given by rbinom(90,100,0.6)/100. Hint: Ask yourself: What is the probability associated with the sample value k/100?
- (ii) Remember³ that the mean of the binomial induced measure on n Bernoulli trials with base probability p is $\mu = np$. Use this fact and the formula for the mean applied to the measure π to compute the desired mean μ_{π} .
- (iii) Look up the formula for the variance of the binomial induced measure on n Bernoulli trials with base probability p, and use this fact and the formula for the variance applied to the measure π to compute the desired variance σ_{π}^2 .

Problem 9 (scaling and translating the range) Generalize the calculations from part (b) of Problem 8 above to calculate the mean and variance of the measure $\nu : \mathcal{O}(\{a\omega + b : \omega \in S\}) \rightarrow [0, 1]$ by

$$\nu(\{a\omega + b\}) = \pi(\{\omega\})$$

where $a, b \in \mathbb{R}$ with a > 0 and $\pi : \mathcal{O}(S) \to [0, 1]$ is a probability measure on a measure space $S \subset \mathbb{R}$ with $\#S < \infty$. What happens if a < 0?

Problem 10 (variation of David Chan's probability problem) What is the probability that a best of seven game series goes to seven games (given the series is between teams A and B, and the probability team A beats team B in any particular game is p)?

³You can also look this up on Wikipedia or elsewhere.