
Assignment 6: Bayes’ theorem, simulation

Due November 7, 2023

John McCuan

Problem 1 (Bayes’ theorem and total probability) Consider an urn containing two
red balls and four green balls. If two balls are drawn in order without replacement,
model the outcomes with the set S2 = {1, 2, 3, 4, 5, 6}2 where S = {1, 2, 3, 4, 5, 6}.
Consider also the function x : S → {r, g} with x(j) = r for j = 1, 2 and x(j) = g for
j = 3, 4, 5, 6.

(a) Introduce appropriate probability measures on S and construct from them a
generalized product measure π on S2 so that π({(i, j)}) is the probability the
i-th ball is drawn first and the j-th ball is drawn second.

(b) Use the function x to obtain subsets of S2 modeling the following compound
outcomes:

(i) The first ball drawn is red.

(ii) The first ball drawn is green.

(iii) The second ball drawn is red.

(c) Let R be the set you found in part (b)(i) above. Let G be the set you found in
part (b)(ii) above. Let R2 be the set you found in part (b)(iii) above. Verify
the following law of total probability:

π(R2) = ρR(R2) π(R) + ρG(R2) π(G)

(d) Calculate π(R2) directly from the values of π and part (b)(iii).

(e) Calculate π(R2) using the law of total probability.
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Problem 2 (Bayes’ rule) The following forms of Bayes’ rule appear in Matthew
Buchan’s project:

P (H|E) =
P (E|H)P (H)

P (E)
and P (H|E) =

P (E|H)P (H)

P (E|H)P (H) + P (E|H)P (H)
.

Assume the symbols E and H represent sets modeling outcomes in some probability
measure space S.

(a) Reexpress each of the probability rules above in terms of the measure

π : M → [0, 1] (1)

and the associated probability restriction measures ρE and ρH .

(b) Use (only) the first form of Bayes’ rule to justify the equality

P (E) = P (E|H)P (H) + P (E|H)P (H). (2)

(c) What would you (or Orloff and Booth) call the relation (2)?

(d) What is M in (1) and why would it (possibly) be incorrect to replace (1) with

π : ℘(S) → [0, 1] ?

In the following problems involving simulation using the statistics package R, I
will use “>” to represent the commandline prompt.

Problem 3 (rbinom, sample, and frequency)

(a) What is the difference between

sample(0:1,5,prob=c(0.4,0.6)) and rbinom(5,1,0.6) ?

(b) Find an implementation of sample equivalent to rbinom(5,1,0.6).

(c) Evaluate the following commands:

> set.seed(150)

> x <- sample(0:1,10,replace=TRUE,prob=c(0.4,0.6))

> set.seed(150)

> y <- rbinom(10,1,0.6)
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Problem 4 (frequency) Let x and y denote the vectors calculated in part (c) of
Problem 3 above.

The frequency of an entry (or element) in a vector is the number of times
that entry appears in the vector. For example, if the fourth entry in x is 0, then the
frequency of the fourth entry is the number of zeros in x.

(a) Does it make sense to talk about the frequency of the number 1 in the vector
x?

(b) How would you define the frequency of 4 in the vector z if

> pv <- c(0.45,0.045,0.0045,0.00045,0.0001,0.00045,0.0045,0.045,0.45)

> z <- sample(0:8,5,prob=pv) ?

(c) What is the frequency of 9 in the vector z from part (b) above?

(d) Give an easy way to calculate the frequencies of the numbers 0 and 1 in the
vector y.

Problem 5 (binomial experiments) Consider
> set.seed(15)

> tottrials <- rbinom(100,1,0.6)

> experiments <- matrix(tottrials,nrow=20,ncol=5)

(a) The code above may be interpreted to simulate twenty experiments in which
each experiment is a simulation of 5 Bernoulli trials. What is the probability
associated with each Bernoulli trial?

(b) What are the outcomes in the twelfth experiment?

(c) What R code/command could you use (or would you use) to display the outcome
of the twelfth experiment?

(d) Exclude the first line of code above (specifying the seed), and execute the re-
maining three commands to obtain a different experiments vector; compose
and execute a command that outputs a vector with the total number of suc-
cesses in each experiment.

3



Problem 6 (binomial experiments; Problem 5 above) Consider appending the fol-
lowing R commands to your commands from part (d) of Problem 5 above:

> xvalues <- rowSums(experiments)

> cepmf=replicate(n=6,xvalues)

> ccepmf <- t(replicate(n=20,0:5))

> calcepmf <- cepmf-ccepmf == 0

> epmf <- colSums(calcepmf)/20

The first line/command above may be considered to give the value of the binomial
inducing function x : {0, 1}5 → R for each of the twenty experiments. The remain-
ing lines/commands determine a vector epmf giving what is called the emperical
probability mass function or sample mass function induced by x on the data
experiments.

(a) Study and understand each of the lines/commands above. Can you obtain the
same epmf in a simpler way?

(b) Execute the following lines/commands to plot the data epmf:

> omega=0:5

> plot(omega,epmf)

(c) Increase the number of experiments, and plot the resulting epmf each time. What
do you observe?

Problem 7 (frequency and the binomial distribution)

(a) Express the vector you produced in part (d) of Problem 5 in terms of frequency
and in terms of the quantities/variables introduced in Problem 6.

(b) What frequency is measured by epmf in Problem 6?

(c) Use dbinom(0:5, size = 5, prob = 0.6) to plot the PMF for the binomial
induced measure.

(d) Compare the plots of epmf and the PMF of the binomial induced measure for
various numbers of experiments. How many experiments do you need to produce
(apparent) frequency stabilization?
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The following (hint) code may be of interest for part (d) of Problem 7:
> plot(omega,epmf,pch=20)

> par(new=TRUE)

> plot(omega,dbinom(omega,5,0.6),pch=1).

Problem 8 (simulated means) Recall that we calculated the mean of the induced
binomial distribution on n (Bernoulli) trials with probability p and found that mean
to be µ = np.

(a) Use R to calculate mean(rbinom(100,10,0.3)).

(b) Increase the number of trials/experiments by factors of 10 each time until you
consider a million trials. Record the calculated means.

(c) Calculate mean(rexp( n, 0.5)) for n = 10, 100, . . . , 1 000 000 similarly, in order
to simulate the mean of the exponential distribution. Recall that here λ = 0.5
is called the rate constant.

Problem 9 (simulation and variance) Recall that for an integral probability measure
with MDF δ : R → [0,∞), the variance of the measure is given by

σ2 =

∫
ω∈R

(ω − µ)2δ(ω) where µ =

∫
ω∈R

ωδ(ω) is the mean.

(a) Find the formula for the variance of the measure induced by a function x : R → R.

(b) Show

σ2 = −µ2 +

∫
ω∈R

ω2δ(ω). (3)

(c) Use rnorm( n, mean = -2, sd = 3) to find the variance of the normal distri-
bution with mean −2 and standard deviation 3. Hint:

> mean((rnorm( n, mean = -2, sd = 3) -µ )2)

(d) Obtain a different simulation to calculate the same number using the formula
(3).
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Problem 10 (conditional probabilities; Problems 5-7 above) Consider replacing the
middle line of R code

tottrials <- rbinom(100,1,0.6)

in Problem 5 with

tottrials <- rbinom(100,1,rbinom(100,10,0.6)/10).

How does this effect the subsequent discussion of Problems 5-7? In particular,

(a) Can you still obtain dbinomial(0:5, size = 5, prob = 0.6) for large num-
bers of experiments as in parts (c) and (d) of Problem 7?

(b) Does (and if so “how does”) changing the parameter size, i.e., the number of
trials in each experiment effect the result(s)?

(c) Making size smaller in part (b) above might be particularly interesting. For
example, if size is taken to be 2, so that for the twenty experiments considered
in the code above related to Problem 5 the number 100 becomes 40, is it possible
to make an explicit calculation (without simulation)?
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