
Assignment 4 = Exam 1: Measures and Probability

Due October 17, 2023

John McCuan

Problem 1 Let π be a probability measure on a measure space S.

(a) Given a subset A ⊂ S with π(A) > 0, define the restriction probability measure
ρA determined on the measure space S by the set A. Hint: Be sure to give a
formula for ρA(T ) for a measurable set T ⊂ S.

(b) Use your definition from part (a) above to prove the following1 law of partition:

If A1, A2, . . . , Ak are (pairwise) disjoint measurable sets in S with

k
⋃

j=1

Aj = S and π(Aj) > 0 for j = 1, 2, . . . , k,

and A is any measurable subset of S, then

π(A) =
k

∑

j=1

ρAj
(A) π(Aj).

1This is a mathematical/measure theory version of what Orloff and Booth call the law of total

probability in their Class 3 notes.
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Problem 2 (independence and dependence) Let π : ℘(S) → [0, 1] be a probability
measure on a set S with finitely many elements. Given two sets A and B with
A,B ⊂ S we say A and B are independent if

ρB(A) = π(A) (1)

where ρB is the probability restriction measure on S determined by B.

(a) Taking the heuristic idea that the probability of an outcome is the value of a
probability measure on some set modeling the outcome, explain in words the
condition (1) defining what it means for two sets to be independent in terms of
probabilities involving outcomes modeled by the two sets:

A and B are independent if the probability of the outcome modeled
by the set A is the same as. . .

(b) Write down formulas for the values of the probability restriction measures

ρA : ℘(S) → [0, 1] and ρB : ℘(S) → [0, 1].

(c) Notice that the defining relation (1) for independence of sets is not symmetric
with respect to the sets A and B.

(i) Prove that if (1) holds, then

ρA(B) = π(B) (2)

where ρA is the restriction measure on S determined by A.

(ii) As in part (a) above, express in words and in terms of “probabilities” the
meaning or interpretation of the condition (2).

(iii) Show (2) implies (1), so the two conditions are equivalent.

(d) Show the conditions (1) and (2) are equivalent to the symmetric condition

π(A ∩B) = π(A) π(B).
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Problem 3 (Binomial measure) Let n be a natural number and let S = {0, 1}n.
Recall that given p with 0 < p < 1 fixed, the binomial measure β : ℘(S) → [0, 1] is
determined by

β({(ω1, ω2, . . . , ωn)}) = p#{j : ωj=1}(1− p)#{j : ωj=0}.

(a) Express the binomial measure as a product measure in terms of the probability
measure π : ℘({0, 1}) → [0, 1] with π({1}) = p.

(b) Taking n = 3 consider the sets

x−1({j}) for j = 0, 1, 2, 3,

where x : S → R by
x(ω1, ω2, ω3) = ω1 + ω2 + ω3.

(i) Find x−1({j}) for j = 0, 1, 2, 3.

(ii) Taking p = 1/2, find M(j) = α({j}) = β(x−1({j})) for j = 0, 1, 2, 3.

(iii) Taking p = 3/4, find M(j) = α({j}) = β(x−1({j})) for j = 0, 1, 2, 3.

(c) Generalize/repeat part (b) for n = 4, 5, 6

(d) Compute the integral of x with respect to the binomial measure β (for general
n and p).
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Problem 4 (simple p-values) Consider the event

“flipping a coin n-times and recording the number of heads.”

Let α denote the binomial induced measure with

α({j}) =

(

n
j

)

pj(1− p)n−j for j = 0, 1, 2, . . . , n. (3)

Note: The value p appearing in (3) with 0 < p < 1 is not the probability p featured
in the name “p-values,” but you should understand that probability by the end of
this problem.

We take as a “null hypothesis” the statement

The coin used in the event above is a fair coin.

Complete parts (a)-(d) under the assumption that the null hypothesis holds, i.e.,
p = 1/2.

(a) Calculate the expectation x∗ of x : {0, 1}n → R by

x(ω1, ω2, . . . , ωn) =

n
∑

j=1

ωj

with respect to the Binomial measure β : ℘({0, 1}n) → [0, 1], i.e., calculate the
integral

x∗ =

∫

S

x

with respect to β where S = {0, 1}n.

(b) Calculate the expectation of the identity function on R with respect to the bi-
nomial induced measure α : ℘(R) → [0, 1].
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(c) Taking n = 3, consider the set

A = {(ω1, ω2, ω3) ∈ S : x(ω1, ω2, ω3) ≥ 2}. (4)

(i) What compound outcome does the set Amodel and what is the probabilistic
interpretation of β(A) in terms of the event “flipping a coin 3 times and
recording the number of heads?”

(ii) Rewrite the set A in the form

A = {(ω1, ω2, ω3) ∈ S : x(ω1, ω2, ω3)− x∗ ≥ δ}

for some δ > 0.

(iii) What compound outcome does the set

B = {(ω1, ω2, ω3) ∈ S : |x(ω1, ω2, ω3)− x∗| ≥ δ}

model?

(iv) Find β(B).

(d) Generalize/repeat part (c) for n = 4, 5, 6 replacing the relation

x(ω1, ω2, ω3) ≥ 2

in (4) with
x(ω1, ω2, . . . , ωn) ≥ n− 1.
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(e) The answers you got for β(B) are not technically p-values. Technically, a p-
value is both the value of a probability measure, i.e., a “probability,” and a
statistic. This means that technically you need a data set to get a p-value.
The idea is that the existence of a certain data set may cast doubt on (or justify
the rejection of) the null hypothesis.

(i) Say you actually flip a coin three times with the result “heads,” “tails,”
“heads” corresponding to the model outcome (1, 0, 1). Then the value you
computed in part (c)(iv) is the p-value associated with the data from
your event (or experiment). The fact that the value β(B) depends on the
data makes it a statistic.

How does β(B) depend on the data? Why is it a statistic?

(ii) If the value of β(B) is “high,” then the idea is that the data gives you no
reason to reject the null hypothesis: As far as this data goes, it may very
well be the case that the coin is a fair coin. But if the value is “low,” then
perhaps the null hypothesis should be rejected.2

Should the p-value in this case be considered “high” or “low?”

(iii) Repeat part (e)(ii) for n = 4, 5, 6. For example, say you flip a coin four
times and obtain an outcome involving 4− 1 = 3 heads. Find the p-value.
Do you think it is “high,” “low,” or somewhere in between?

(iv) Given data (ω1, ω2, . . . , ωn) ∈ S corresponding to actual coin flipping for
some general n, formulate the associated p-value determined by the data
and the null hypothesis the coin is fair. Hint: If x(ω1, ω2, . . . , ωn) = k,
then the p-value is the probability, assuming the null hypothesis, that any
data a ∈ S collected in a similar manner, i.e., by flipping the coin n times,
has x(a) at least as far from the expected value x∗ as the actual data
ω = (ω1, ω2, . . . , ωn).

2If one rejects applied probability out of hand and in principle, then all null hypotheses are
automatically rejected as well—without any p-test.
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(f) Here is perhaps the most interesting part of this problem: The description of the
calculation of a p-value defined/described in part (e) above, e.g.,

. . . the probability, assuming the null hypothesis, . . .

strongly suggests the calculation of the value of some restriction probability
measure.

(i) What is the domain of the measure in question which is being restricted?

(ii) What collection of abstract outcomes does that domain model?
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Trivia: The actual threshold according to which a p-value is considered “small” is
fundamentally arbitrary (as far as I know). The value 0.05 however is the most com-
monly used threshold, and this apparently3 goes back to the mathematician Pierre-
Simone Laplace who first argued in 1837 that the calculation of a specific p-value
somewhat greater than 0.05, namely 0.0897, could reasonably be taken to indicate
his null hypothesis (in this case something to do with “random” selection of jury
members for trials) was possibly correct while he interpreted another calculation of
a p-value of 0.00468 to be reasonable evidence that the associated null hypothesis
should be rejected.

It seems that Ronald Fisher picked up on Laplace’s threshold and in his 1925 book
Statistical Methods for Research Workers associated the specific threshold value 0.05
with the term “statistical significance.” And this is the (arbitrary) value that has been
more or less officially adopted ever since. It is amusing that this adoption has led to
the assertion by famous statistician and executive director of the American Statistical
Association (ASA) Ron Wasserstein that “statistical significance” has today become
meaningless. Wasserstein’s statement appeared in connection with the articles in a
special issue of The American Statistician entitled “Statistical inference in the 21st
century: a world beyond p < 0.05.” Included was an official ASA statement warning4

against the use of statistical significance and p-values including the following:

• Do not base your conclusions solely on whether an association or effect was found
to be statistically significant (i.e., the p value passed some arbitrary threshold
such as p < 0.05);

• Do not believe that an association or effect exists just because it was statistically
significant;

• Do not believe that an association or effect is absent just because it was not
statistically significant;

• Do not believe that your p value gives the probability that chance alone pro-
duced the observed association or effect or the probability that your test hy-
pothesis is true;

• Do not conclude anything about scientific or practical importance based on
statistical significance (or lack thereof).

3according to Justin Zeltzer https://www.youtube.com/watch?v=4XfTpkGe1Kc
4quoted from an article in favor of the use of p-values and the 0.05 threshold, “Statistical signifi-

cance: p value, 0.05 threshold, and applications to radiomics—reasons for a concervative approach”
in the journal European Radiology Experimental.
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