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Problem 1 (From section 1.4.1 of my notes) Let F denote a family of sets.

(a) Prove De Morgan’s law
(

⋃

A∈F

A

)c

=
⋂

A∈F

Ac.

(b) (counting) If #F = m < ∞ so that F = {A1, A2, . . . , Am} and

#Aj = nj for j = 1, 2, . . . , m,

then find the cardinality of the Cartesian product

∏

A∈F

A.

Problem 2 (From section 1.4.2 of my notes) Let x : R → S be a function.

(a) State precisely what it means for x to be injective.

(b) Show x is injective if and only if there exists a function y : S → R such that
y ◦ x = idR.

(c) State precisely what it means for x to be surjective.

(d) Show x is surjective if and only if there exists a function y : S → R such that
x ◦ y = idS.
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Partial Solution:

(a) The function x : R → S is injective if whenever one has x(a) = x(b) for some
a, b ∈ R, then a = b.

(b) If x : R → S is injective, and there is some element a0 ∈ R, then consider
y : S → R by

y(c) =

{

a, where x(a) = c, if c ∈ x(R)
a0, if c ∈ S\x(R).

(1)

Recall that x(R) = {x(a) : a ∈ R}. Therefore, if c ∈ x(R), then there exists
some a ∈ R with x(a) = R. Furthermore, S can be written as a disjoint union
S = x(R) ∪ [S\x(R)], so if we can assign a value y(c) ∈ R to each element c

in one of the sets x(R) and S\x(R) as we have attempted to do in (1) then we
will have defined a fucntion y : S → R.

In order to show the function given in (1) is well-defined, we should consider
the possibility that given c ∈ x(R) with c = x(a), there is also some b ∈ R with
x(b) = c (for some b for which maybe b 6= a). In this case, because the function
x is injective and x(a) = c = x(b), we know

b = a,

so the value given for y(c) in the first case of the definition (1) is unique.

Technically, it might also be the case that the set R is empty, and there is no
element a0 ∈ R. In this situation, the second case of (1) has a problem, and also
the entire assertion of part (b) of the problem (very likely) has a problem. To
be specific, if R = φ, then the function x is what is called the empty function.
If it happens to be the case that the set S is empty as well, then we are okay:
Then we can take y : φ → φ to be the empty function as well. The composition
y ◦ x is the empty function and the identity on the empty set is the empty
function, so the assertion of the problem is trivially, and somewhat vacuously,
true. If, however, S 6= φ, then there does not exist any function y : S → R = φ

(because there is some element c ∈ S, and there is no way to assign this element
c to any element of R = φ). In this situation where R = φ and x is the empty
function, however, the following meta-principle comes into play:

It is difficult to imagine any situation in which it is useful or interest-
ing to consider the empty function.
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In view of this meta-principle, I suggest we ignore the case when x : R = φ → S

is the empty function, though in practice it’s a little too late for that.

Returning to the situation in which R 6= φ and x : R → S is not the empty
function, we have a well-defined function y : S → R given by (1), and it remains
to verify the composition y ◦ x is the identity on R. In fact, if a ∈ R, then

y ◦ x(a) = y(x(a)) = a = idR(a).

This completes the proof of the assertion that if x : R → S is injective, then
there exists a function y : S → R for which y ◦ x = idR, i.e., there exists a left
inverse (at least in the situation where R 6= φ).

Next we assume the existence of a function y : S → R with y ◦ x = idR.
Take a, b ∈ R with x(a) = x(b). Applying the function y to the common value
c = x(a) = x(b), we see

a = idR(a) = y ◦ x(a) = y ◦ x(b) = idR(b) = b.

This means x is injective. �

Problem 3 (From section 1.4.3 of my notes) Given a (baby) measure µ on a set
S = {ω1, ω2, . . . , ωn}, explain why the restriction

µ∣
∣

Ω

to Ω = { {ω1}, {ω2}, . . . , {ωn} }

is not a measure.

Problem 4 (Exercise 1.4.3 from my notes) Let S = {ω1, ω2, . . . , ωn} be a set with n

elements.

(a) Define what it means for π to be a probability measure on S.

(b) Give an example of a probability measure π on S.

(c) Can you find a subset T ⊂ S so that the restriction measure r on T is not a
probability measure? If not, go back and find a second example for part (b) so
that you can find such a subset T .

(d) Find an example of a probability measure π on S and a proper subset T ⊂ S so
that the restriction measure r is a probability measure on T .
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Problem 5 (section 1.4.3 from my notes) Let S be a measure space with probability
measure π : ℘(S) → [0, 1].

(a) Given a subset T ⊂ S define the restriction measure r = rT and show r is a
measure.

(b) Given a subset T ⊂ S define the conditional probability measure ρ = ρT
and show ρ is a measure.

Problem 6 (section 1.4.3 in my notes) Let S = {ω1, ω2, . . . , ωn} be a set with #S =
n < ∞. Consider # : P(S) → [0,∞), i.e., the cardinality of sets given by the number
of elements in the set.

(a) Show # is a measure.

(b) To which probability measure is # related and how?

Problem 7 (section 1.4.3 in my notes) Let

S = {one, two, three, four, five, six}.

Consider the uniform probability measure π on S. Let

A = {one, three, five}.

and
B = {four, five, six}.

(a) Calculate ρB(A) and ρA(B).

(b) Explain how Bayes’ rule relates the two conditional probabilities you found in
part (a).

Problem 8 (section 1.4.3 in my notes) Let

S = {one, two, three, four, five, six}.

Consider the uniform probability measure π on S. Let

A = {one, three, five}.

and
B = {one, two}.
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(a) Calculate ρB(A) and ρA(B).

(b) Explain how Bayes’ rule relates the two conditional probabilities you found in
part (a).

Problem 9 (Problems 7 and 8 above) Consider the value

π(A ∩ B)

in each of Problem 7 and Problem 8 above.

(a) In which problem(s) is the value π(A ∩ B) the same as π(A)π(B)?

(b) How would you describe the meaning of what you found in part (a) above?

Problem 10 (Problems 7 and 8 above and section 1.4.3 in my notes) Let S be
the measure space with the uniform probability measure π under consideration in
Problems 7 and 8 above, and consider the real valued function x : S → R by

x(one) = 1

x(two) = 2

x(three) = 3

x(four) = 4

x(five) = 5

x(six) = 6.

For each of Problem 7 and Problem 8 above calculate the following:

(a) The integral of x over A with respect to π.

(b) The integral of x over B with respect to π.

(c) The integral of x over S with respect to π.

(d) The integral of x over A with respect to ρA.

(e) The integral of x over B with respect to ρA.

(f) The integral of x over S with respect to ρA.

(d) The integral of x over A with respect to ρB.

(e) The integral of x over B with respect to ρB.

(f) The integral of x over S with respect to ρB.
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