Assignment 1: Sets, Functions, Measures Due September 12, 2023

John McCuan

September 5, 2023

Problem 1 (From section 1.4.1 of my notes) Let \mathcal{F} denote a family of sets.

(a) Prove De Morgan's law

$$\left(\bigcup_{A\in\mathcal{F}}A\right)^c = \bigcap_{A\in\mathcal{F}}A^c.$$

(b) (counting) If $\#\mathcal{F} = m < \infty$ so that $\mathcal{F} = \{A_1, A_2, \dots, A_m\}$ and

 $#A_j = n_j$ for $j = 1, 2, \dots, m$,

then find the cardinality of the Cartesian product

$$\prod_{A\in\mathcal{F}}A.$$

Problem 2 (From section 1.4.2 of my notes) Let $x : R \to S$ be a function.

- (a) State precisely what it means for x to be injective.
- (b) Show x is injective if and only if there exists a function $y : S \to R$ such that $y \circ x = id_R$.
- (c) State precisely what it means for x to be surjective.
- (d) Show x is surjective if and only if there exists a function $y: S \to R$ such that $x \circ y = id_S$.

Problem 3 (From section 1.4.3 of my notes) Given a (baby) measure μ on a set $S = \{\omega_1, \omega_2, \ldots, \omega_n\}$, explain why the restriction

$$\mu_{\mid_{\Omega}} \quad \text{to} \quad \Omega = \{ \{\omega_1\}, \{\omega_2\}, \dots, \{\omega_n\} \}$$

is **not** a measure.

Problem 4 (Exercise 1.4.3 from my notes) Let $S = \{\omega_1, \omega_2, \ldots, \omega_n\}$ be a set with *n* elements.

- (a) Define what it means for π to be a **probability measure** on S.
- (b) Give an example of a probability measure π on S.
- (c) Can you find a subset $T \subset S$ so that the restriction measure r on T is not a probability measure? If not, go back and find a second example for part (b) so that you can find such a subset T.
- (d) Find an example of a probability measure π on S and a proper subset $T \subset S$ so that the restriction measure r is a probability measure on T.

Problem 5 (section 1.4.3 from my notes) Let S be a measure space with probability measure $\pi : \mathcal{O}(S) \to [0, 1]$.

- (a) Given a subset $T \subset S$ define the restriction measure $r = r_T$ and show r is a measure.
- (b) Given a subset $T \subset S$ define the conditional probability measure $\rho = \rho_T$ and show ρ is a measure.

Problem 6 (section 1.4.3 in my notes) Let $S = \{\omega_1, \omega_2, \ldots, \omega_n\}$ be a set with $\#S = n < \infty$. Consider $\# : \mathcal{P}(S) \to [0, \infty)$, i.e., the cardinality of sets given by the number of elements in the set.

- (a) Show # is a measure.
- (b) To which probability measure is # related and how?

Problem 7 (section 1.4.3 in my notes) Let

 $S = \{ \text{one, two, three, four, five, six} \}.$

Consider the uniform probability measure π on S. Let

$$A = \{\text{one, three, five}\}.$$

and

$$B = \{$$
four, five, six $\}.$

- (a) Calculate $\rho_B(A)$ and $\rho_A(B)$.
- (b) Explain how Bayes' rule relates the two conditional probabilities you found in part (a).

Problem 8 (section 1.4.3 in my notes) Let

 $S = \{$ one, two, three, four, five, six $\}$.

Consider the uniform probability measure π on S. Let

$$A = \{\text{one, three, five}\}.$$

and

$$B = \{ \text{one}, \text{two} \}.$$

- (a) Calculate $\rho_B(A)$ and $\rho_A(B)$.
- (b) Explain how Bayes' rule relates the two conditional probabilities you found in part (a).

Problem 9 (Problems 7 and 8 above) Consider the value

$$\pi(A \cap B)$$

in each of Problem 7 and Problem 8 above.

- (a) In which problem(s) is the value $\pi(A \cap B)$ the same as $\pi(A)\pi(B)$?
- (b) How would you describe the meaning of what you found in part (a) above?

Problem 10 (Problems 7 and 8 above and section 1.4.3 in my notes) Let S be the measure space with the uniform probability measure π under consideration in Problems 7 and 8 above, and consider the real valued function $x: S \to \mathbb{R}$ by

x(one) = 1 x(two) = 2 x(three) = 3 x(four) = 4 x(five) = 5x(six) = 6.

For each of Problem 7 and Problem 8 above calculate the following:

(a) The integral of x over A with respect to π .

(b) The integral of x over B with respect to π .

(c) The integral of x over S with respect to π .

(d) The integral of x over A with respect to ρ_A .

(e) The integral of x over B with respect to ρ_A .

(f) The integral of x over S with respect to ρ_A .

(d) The integral of x over A with respect to ρ_B .

(e) The integral of x over B with respect to ρ_B .

(f) The integral of x over S with respect to ρ_B .