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1 Fundamental Concepts

• Event: An event is a subset of the set of all possible outcomes in an
experiment (a procedure with defined outcomes that is repeatable). For
example, in a dice roll, an event could be rolling a number greater than
4, denoted as {5, 6}.

• Probability: Probability can be considered as a measure of the state of
knowledge or certainty about an event. I.e. a measure quantifying the
”chance” that an event will occur. This is defined as a number between 0
and 1.

• Probability Function: A probability function is a mathematical func-
tion that assigns a probability value to each outcome in the set of all
possible outcomes. The sum of probabilities for all possible outcomes
equals 1.

• Probability Distribution: A probability distribution describes the prob-
abilities associated with all of the possible outcomes of a random variable.

• Random Variable: A random variable is a variable whose values are
outcomes of a random process, assigning numerical values to each outcome.
In a coin toss, a Random Variable X could be defined as 1 for heads and
0 for tails, mapping the outcomes to numbers.

• System: A system can be thought of as a collection of elements that
interact with one another; or, in other words, a group of components that
function together.

• State: A state is the status of a system at a specific time. It is a descrip-
tion of the relationships between the interacting things. For example, in a
system of particles, a state can be the relative positions of those particles
at a specific time.

• Discrete: Discrete refers to variables or systems that take distinct values.
For example, the number of people in a classroom is discrete since it can
only take distinct, integer values.
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• Process: A process is simply a series of actions or changes within a
system.

• Stochastic Process: A stochastic process is a collection of random vari-
ables representing the change of a system over time. It is defined as a
sequence of random variables: X1, X2, . . ., where each variable represents
the state of the system at a different point in time.

2 Introduction to Markov Chains

2.1 Definition

A Markov Chain is a type of stochastic process that can model a sequence
of events occurring in a system. Here, events refer to the transition from one
state to another and model refers to the method of representing and analyzing
a system’s behavior through a set of states and transitions. Specifically, Markov
Chains are used to model systems where the future state (the state the system
will be in next) depends only on the current state (the state the system is in
now) and not on previous states (the sequence of states that the system was in
before the current state), this is known as the Markov Property.

2.1.1 Markov Property

The Markov Property is a property of some stochastic processes that states
that the probability of transitioning to a future state depends only on the cur-
rent state attained during the previous event, not on the sequence of states
that preceded it. For a sequence of states represented by random variables
X1, X2, . . . , Xn, the Markov Property is satisfied if, for every n:

P (Xn+1 = x|Xn = xn) = P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn)

Here, Xn denotes the current state, and Xn+1 represents the future/next state.
The probability function P gives us the probability of moving from the current
state Xn to the next state Xn+1.

2.2 Mathematical Formulation

2.2.1 State Space

The state space of a Markov Chain is the set of all distinct states that the
system may be in. This can be represented as:

S = {s1, s2, . . . , sn}

where each si is a distinct state. The above is also an example of a finite Markov
Chain, which means that the state space is finite (the total number of possible
states are bounded by some real number).

For example, in a simple weather model, the state space might be S =
{Sunny,Cloudy,Rainy}.
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2.2.2 Transition Matrix

The transition matrix is a square matrix that describes the probabilities of
moving from one state to another in one time step. It is often denoted as P and
defined as:

P = [pij ]

where pij represents the probability of transitioning from state i to state j in
one step. Each row of the transition matrix represents a probability distribution
over the states, and therefore, the sum of the probabilities in a row is 1.

For instance, in a retail business model with states Low Sales (LS), Moderate
Sales (MS), and High Sales (HS), the transition matrix might look like:

P =

pLS, LS pLS, MS pLS, HS

pMS, LS pMS, MS pMS, HS

pHS, LS pHS, MS pHS, HS


2.2.3 Graphical Representation

A Markov Chain can be represented graphically using a state diagram. Each
state is a node in the graph, and transitions are directed edges between these
nodes, often labeled with their probabilities.

LS MS HS

pLS, MS

pMS, LS

pMS, HS

pHS, MS

pLS, LS

pMS, MS

pHS, HS

Above is the state diagram visualizing the transitions between states.

2.3 Applications of Markov Chains

Markov Chains are extremely popular and can be found in many scientific ar-
eas. In Computer Science, A well-known application is Google’s PageRank
algorithm, which uses Markov Chains to rank web pages in search engine re-
sults. It models the internet as a massive network of web pages (states) and
links between them (transitions), predicting the likelihood of a random surfer
visiting a particular page (you might recognize this if you took MATH 1554),
which ranks different web pages across the internet. In biology and social sci-
ences, Markov Chains can accurately model population dynamics and disease
transmission. Other areas include, physics, chemistry, finance, and sports.

3 Simple Example of a Markov Chain

This section presents a practical application of a Markov Chain. Consider a car
rental service with a small fleet of cars. The number of cars available each day

3



can be in one of three states: Low (L), Medium (M), or High (H). The state
changes (transitions) based on customer rentals and returns.

3.0.1 Defining the Transition Matrix

The transition matrix for this scenario can be defined as follows, where again
each element pij represents the probability of moving from state i to state j:

P =

pL, L pL, M pL, H
pM, L pM, M pM, H

pH, L pH, M pH, H


Assume that through data analysis of customer behavior on a weekly basis,

we are provided the matrix:

P =

0.7 0.2 0.1
0.3 0.4 0.3
0.1 0.3 0.6


3.0.2 Graphical Representation

We can also represent the Markov Chain using a state diagram as follows:

L M H

0.2

0.3

0.3

0.3

0.7

0.4

0.6

3.0.3 Problem Solving

A steady-state distribution is a probability vector π (vector with non-negative
entries that sums to 1) that remains the same after applying the Markov Chain
transition matrix P . It satisfies the equation πP = π, in this state, the prob-
abilities of being in any particular state do not change from one step to the
next.

The question is to determine the steady-state distribution for the availability
of cars in the rental service (Low (L), Medium (M), and High (H)).

We can write out our system of equations using the matrix we defined above:

πL · 0.7 + πM · 0.3 + πH · 0.1 = πL

πL · 0.2 + πM · 0.4 + πH · 0.3 = πM

πL · 0.1 + πM · 0.3 + πH · 0.6 = πH

πL + πM + πH = 1
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Upon solving these equations, we find the steady-state distribution:

πL = 0.3947

πM = 0.2895

πH = 0.3158

The calculated values indicate that the car rental service has the following
long-term distribution: a low number of cars available about 39.47% of the time,
a medium number of cars available about 28.95% of the time, and a high car
availability about 31.58% of the time.

This steady-state distribution is valuable for the car rental service, providing
insights into the typical availability of cars. This information can be useful for
decisions about car management, marketing strategies, and supply and demand.

4 State Classification in Markov Chains

4.1 Accessibility

A state j is accessible from a state i if there is a non-zero probability of
transition from i to j in some number of steps. This means that j is accessible

from state i if there exists some n ≥ 0 such that p
(n)
ij > 0, where p

(n)
ij is the

n-step transition probability from i to j. Visually in a state diagram, if the
node of state j is reachable from state i then j is accessible from i.

Example: Below is a Markov Chain with states A, B, and C. There is a
transition from A to B, and from B to C, although there is no direct transition
from A to C. A can reach C so it is accesible.

A B C

Here, state C is accessible from state A through B, but there is no direct
path from A to C.

4.2 Communication

Two states i and j are said to communicate with each other if i is accessible
from j and j is accessible from i.

Example: Consider a Markov Chain with states 1 and 2 where each state
can transition to the other.

1 2

States 1 and 2 communicate with each other since there is mutual accessi-
bility.
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4.3 Recurrent and Transient States

A state i is called recurrent if we begin at i, and the probability of going back
to i is 1 over some number of steps. In other words, this means that once we
reach recurrent state, it will continue to be returned to infinitely. The opposite
type of state would be transient, which means there is a non-zero probability
that the process will not return to this state after leaving it.

5 Types of Markov Chains

5.1 Regular Markov Chains

Regular Markov Chains are a class of Markov Chains where every state is ac-
cessible from every other state. This means after some number of steps, the
probabilities of transitioning from one state to any other state are positive.
Why is this important? This means we can reach a steady-state distribution.

Example: Consider a Markov Chain with states P and Q, where there are
transitions between P and Q and vice versa.

P Q

In this chain, it is possible to reach either state from the other, making it a
regular Markov Chain.

5.2 Absorbing Markov Chains

Absorbing Markov Chains contain at least one absorbing state, which is a state
that once entered cannot be left (think about how recurrent and absorbing states
are related). These chains are useful in modeling processes where certain states
can never be left (like winning/losing a game).

Example: Consider a Markov Chain with states A, B, and C, where A is
an absorbing state, and there are transitions from B to C and C to B, but none
out of A. Thus when A is reached, there are no transitions out of it.

A B C

Here, state A is an absorbing state. Once the process enters state A, it
remains there.

6 The Gambler’s Ruin Problem

Problem: Player A has $1 and Player B has $2. The winner of each game
takes $1 from the other. Player A is a better player than B, with a probability
of winning 2/3 of the games. The game continues until one of the players is
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bankrupt. We are interested in finding the probability that Player A wins the
entire game.

6.1 Absorbing Markov Chain Formulation

This problem can be modeled as an absorbing Markov Chain (due to the ter-
mination of the game). The states of the chain represent the amount of money
Player A has, which can be 0, 1, 2, or 3 dollars. The states 0 and 3 are absorbing
states, where the game ends either with Player A losing everything (state 0) or
winning everything (state 3). States 1 and 2, are for Player A holding $1 and
$2 respectively.

6.2 State Space and Transition Probabilities

The state space is defined as {0, 1, 2, 3}. The transition probabilities are as
follows:

• From state 1 (when Player A has $1), the probability of going to state 0
(Player A loses a game) is 1/3, and to state 2 (Player A wins a game) is
2/3.

• From state 2 (when Player A has $2), the probability of going to state 1
(Player A loses a game) is 1/3, and to state 3 (Player A wins a game) is
2/3.

The transition matrix P and diagram are given by:

P =


1 0 0 0
1/3 0 2/3 0
0 1/3 0 2/3
0 0 0 1



0 1 2 31
1/3

2/3

1/3

2/3

1

7



6.3 Solution

To find the probability that Player A wins (reaches state 3 starting from state
1) let ai be the probability of reaching state 3 starting from a state i. We have:

a0 = 0 (Player A cannot win from state 0)

a3 = 1 (Player A has already won in state 3)

a1 =
1

3
a0 +

2

3
a2

a2 =
1

3
a1 +

2

3
a3

Solving these equations, we find that:

a1 = 0.5714 (Approximately 57.14% chance of Player A winning from state 1)

a2 = 0.8571 (Approximately 85.71% chance of Player A winning from state 2)

This shows us player A has a 57.14% chance of winning the game.

7 Further Exercises

Exercise 1: Two-State Markov Chain

Consider we have a Markov Chain with two states, X and Y. The transition
probabilities are as follows: A to B is 0.4, and from B to A is 0.6. Create the
transition matrix and find the steady-state.

Exercise 2: Absorbing States in a Board Game

Let’s play a game! There are 3 stairs. 2 players start at the first stair and either
take a step up to the second stair or go back to the floor (stair 0). From stair
2, they can move to 3 or back to 1. This is a short staircase, where reaching
stair 3 means you made it to the top and win. If the probability of moving up
is twice the probability of moving back, again create the transition matrix and
identify the absorbing states.
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