
Randomness and Pseudorandom Number

Generators

Arjun Bhamra

November 7, 2023

Contents

1 Introduction 2

2 Randomness, Pseudorandomness, and Physically Random Sys-
tems 2
2.1 What is a truly random number? 2
2.2 Examples of Physically Random Systems (with caveats) 3

3 Mathematical Primers 3
3.1 Sequences of numbers . 3

3.1.1 What is a sequence? . 3
3.1.2 Recurrence Relations . 4

3.2 Modular Arithmetic . 4
3.2.1 Congruence . 4
3.2.2 Other Useful Properties 5
3.2.3 How does the modulus play with sequences? 5

4 Pseudorandom Number Generators 5
4.1 Why are sequences and recurrence relations relevant to random

number generation? . 6
4.2 Aside: Targeting a Distribution 6

5 Period m of a PRNG 6
5.1 What is the period of a sequence of pseudorandom numbers? . . 6
5.2 Why do we want to maximize the period? 6

6 More Concrete Examples of PRNGs 7
6.1 The Counter . 7
6.2 The Linear Congruential Generator 7
6.3 The Hull-Dobel Theorem for maximizing an LCG’s period 8
6.4 Example of the Hull-Dobel Theorem 8
6.5 IBM RANDU and Poor Input Selection 9

6.5.1 Modular Arithmetic for IBM RANDU 9

1

7 Exercises 10

1 Introduction

Before we begin, I’d like to provide some reasoning behind my topic selection.
Throughout this course, Dr. McCuan has placed some emphasis on technology
and simulations; indeed, we’ve had some homeworks on simulation components
that have emphasized, for example, the Bernoulli and Binomial measures and
distributions. In order to even create these simulations, we have to rely on
software packages such as Python, R, Mathematica, etc., which all need to
be able to generate random numbers. First, we will begin by exploring what
it means to be a random number and what it means to be a pseudorandom
number. Then, we will extend this idea to sequences of pseudorandom numbers
and some examples. My end goal is to give all of you a greater appreciation for
how a pseudorandom number generator (PRNG) works, and some insight into
the nature of randomness as we know it.

2 Randomness, Pseudorandomness, and Physi-
cally Random Systems

2.1 What is a truly random number?

A guiding question: First and foremost, what is a random number? Attempt
to define one for yourself right now before I attempt one myself.

Now that you have an idea of what a random number may mean, allow
me to give you my definition of a truly random number. A random number
is a number chosen as if by chance from some specified distribution such that
selection of a large set of these numbers reproduces the underlying distribu-
tion. Almost always, such numbers are also required to be independent, so
that there are no correlations between successive numbers. This last statement
implies some sort of requirement relating to sequences, which we will get into
later. For the time being, note that in order to ”evaluate”, in some way, the
randomness of some system, we must get some non-singleton set of trials from
said system.

Here we define a physically random system as a system that has no
deterministic method of predicting a given output value at some point in mea-
surement or after some action is performed.

The main distinction between a truly random number, and a ”fake” or pseu-
dorandom number, is that truly random numbers are defined uniquely by phys-
ical systems and entropy (as a measure of unpredictability or surprise of the
number generation process), whereas a pseudorandom number is defined (nec-
essarily) by some mathematical formula that can repeatably give the same num-
ber, if given the same inputs [3]. We will talk about this later.

2

2.2 Examples of Physically Random Systems (with caveats)

An interesting note: Consider how this topic and what I’ve said relates to
paper 2. As a refresher, the (paraphrased) prompt was

Given someone flips a coin and you do not see the outcome, does
the number 1

2 give you any information?

This idea is relevant because it showcases, quite clearly, the clearest example
of a physically random system. I want to be clear that there are actually some
implicit assumptions in the phrasing of this question that make it interesting:
we assume that the person witnessing the coin flip has no knowledge of the wind
speed, angle of flip, method used to flip, etc.

The Caveat: Given all of this information, it is theoretically possible to
reliably ascertain the side of the coin that is face up, however, we consider this
system physically random because it is near impossible to accurately get
all of these initial conditions for a coin flip from someone’s hand. In a similar
way, we will also consider dice as physically random systems as well.

A final interesting example is that of Unix’s /dev/random [4], which actu-
ally uses the physical systems of your device (such as device driver data, heat
outputs, etc.) in order to generate a random number.

More examples: Try to think of other examples of physically random
systems!

3 Mathematical Primers

Before we begin actually delving into Pseudorandom Number Generators (PRNGs),
it makes sense to review a few key tools that are used frequently to define
PRNGs. We will introduce these concepts here, and then explain why they are
useful in the next section.

3.1 Sequences of numbers

3.1.1 What is a sequence?

A sequence of numbers is an ordered list of numbers, where each number in
the sequence is called a term. We are going to be focusing on sequences with
terms in R. Sequences can be finite or infinite, but because we are discussing
random number generation for chiefly practical purposes, we will focus on finite
sequences. Some common notations for sequences are to use parentheses and
comma separated terms such as

(a1, a2, a3, . . .)

A sequence can either start with a term a0 indexed by 0 or a term a1 indexed
by 1, and the ellipses are commonly used to signify that the rest of the sequence

3

https://linuxhandbook.com/dev-random-urandom/

can be clearly ascertained from the given elements. This hints at the idea of
using a current number to generate a subsequent number in some way, which we
will discuss later. Finite sequences are usually given some starting number or
numbers, which we will call a seed (or seeds), as well as some constraint on the
upper bound of the sequence, which can either be a maximum allowed value, a
set length of the sequence, etc. The way to notate this is as follows:

(ak)
n
k=0 = (a0, a1, . . . , an)

for some upper iteration bound n. A well known example of a sequence is
(0, 1, 1, 2, 3, 5, 8, . . .), which is exactly the infinite Fibonacci Sequence.

The most important way (for us) in which we can generate sequences is
through...

3.1.2 Recurrence Relations

A recurrence relation is an equation that expresses each element of a sequence
as a function of the preceding elements. Mathematically, this can be described
as

ωn = φ(n, ωn−1, . . . , ωn−k) for n ≥ k

This function has signature φ : N ×X → X, where the n encodes that we are
generating the nth term in the sequence, and there are dependencies on previous
terms ωn−1, . . . , ωn−k.

To reiterate, a recurrence relation can have multiple seed/initial values, and
can have zero to multiple dependencies on previous entries. Two valid sequences
are

(an = 1)10n=1

(an = an−1 + an−2)
5
n=2with a0 = 0, a1 = 1

where the second sequence is, once again, the Fibonacci Sequence, this time
defined up to 6 terms. The order of a recurrence is the difference between the
highest and lowest subscripts of the equation.

3.2 Modular Arithmetic

Modular Arithmetic is a system of arithmetic for integers, where a number may
”wrap around” when reaching a certain value called the modulus. A common
usage of modulus is the standard 12 hour clock; if we go over 12, we simply
wrap back around to 0 after every 12 hours. Let’s go over some key concepts.

3.2.1 Congruence

Given an integer n > 1 called a modulus, two integers a and b are congruent
modulo n if n is a divisor of their difference; that is, if there is an integer k
such that

a− b = kn

4

This is denoted as
a ≡ b (mod n)

Note that a− b = kn can be rewritten as a = kn+ b, which should remind you
of the Euclidean Division Algorithm from CS2050/51 and MATH 3012.

Important Note: Be sure to understand the difference between a ≡ b
(mod n) and a ≡ b mod n. The 2nd equation applies the modulus only to b.

3.2.2 Other Useful Properties

The congruence relation satisfies all conditions of an equivalence relation,
which guarantees certain properties. These are:

1. Reflexivity: a ≡ a (mod n)

2. Symmetry: a ≡ b (mod n) if b ≡ a (mod n)

3. Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n)

There are, of course, many other properties of the modulus, but these equiva-
lence relation properties are key to know.
Note: Also recall that the congruence relation is compatible with addition,
subtraction, and multiplication.

3.2.3 How does the modulus play with sequences?

To be brief: given some sequence where a modulus is present at the end, like
an = 2 · an−1 + 1 (mod n), we can see clearly that any values that are gener-
ated by iterating through this sequence will be at most n − 1 (because 0 ≡ n
(mod n)). This idea of a ”cap” of sorts on the generable numbers is useful if we
are trying to generate numbers within a specific interval (hint hint wink wink...)

4 Pseudorandom Number Generators

Since we have already mentioned pseudorandom numbers in some capacity, this
section will be brief but will aim to formalize some of what we’ve talked about.
As previously mentioned, we can use physically random systems as some form
of a Physically True Random Number Generator (PTRNG); this is
an ideal situation for anyone that wants to get a truly random number as an
output. However, the more common alternative is a Deterministic Random
Number Generator (DRNG) or Pseudorandom Number Generator (PRNG),
which extends a seed value to a (possibly) very long output sequence of random
numbers in a deterministic way. Interestingly enough, while outside the scope of
this discussion, there are ”hybrid” PRNGs that use a Physically True Random
Number Generator (i.e. some physically random system that can be sampled)
to provide either a seed value or an intermittent modification to the generated
sequence [3].

5

4.1 Why are sequences and recurrence relations relevant
to random number generation?

I’d argue that this is probably one of the key takeaways of this entire paper; all
deterministic pseudorandom number generators are dependent on a
recurrence relation.

Note that, by definition, all DRNGs/PRNGs are deterministic; i.e. given
some initial conditions, there needs to be a 100% reproducible way to get to the
nth term of some sequence of some PRNG. This guarantee of reproducibility
and state transition can be efficiently represented through, you guessed it, a
recurrence relation; this can be easily shown for simple examples such as a
counter and Linear Congruential Generator PRNGs, which we will see soon,
but is even true for more complicated and industry standard algorithms such as
the Mersenne Twister algorithm, as seen here.

4.2 Aside: Targeting a Distribution

As a very brief aside, we’ve gone through quite some content without really
mentioning what distribution we are trying to randomly generate from. Here,
the industry standard is, intuitively, the uniform distribution. It is particularly
easy to work with, is convenient to engineer new PRNGs (and other tooling)
around, and while outside the scope of this presentation, it is also easy (rel-
ative to other distributions) to convert the uniform distribution to any other
distribution of your choice.

5 Period m of a PRNG

5.1 What is the period of a sequence of pseudorandom
numbers?

One of the most important pieces of data we can get about any PRNG is its
period, which is the length m of the sequence generated by a PRNG before it
begins to repeat itself. As an example, lets say I have a PRNG that generates
the ordered set {1, 2, 3, 5, 8} and then repeats. We say this PRNG (which is
comically bad) has a period of 5.

5.2 Why do we want to maximize the period?

A thought experiment: First, I’d like for you to think for yourself why this
may be true. See if you can come up with any compelling reasons.

Hopefully, you’ve realized that the shorter a period, the quicker a sequence
repeats itself. In the real world, this is undesirable for numerous reasons, most
notable of which are reduced statistical quality and reliability. In this way,
having a maximal period m is crucial, but we can’t (usually) directly control
the period of a PRNG. Instead, depending on the PRNG, we can carefully

6

https://www.maths.tcd.ie/~fionn/misc/mt/

choose inputs that guarantee a maximal period. We can see an example of this
later on with Linear Congruential Generators.

6 More Concrete Examples of PRNGs

6.1 The Counter

The counter PRNG is exactly what it sounds like; a PRNG that uses a constant
increment to traverse over some subset of the values between the seed X0 and
the modulus m. The form of this PRNG is

Xn = Xn−1 + c (mod m)

for some parameters c and m. Here,

1. m is the modulus

2. c such that (0 ≤ c < m) is the increment

3. X0 such that (0 ≤ X0 < m) is the seed

Note that after generating this sequence, we have to divide by the modulus m
to normalize our sequence to emulate the uniform distribution.

It is clear to see that the counter does not generate very good random num-
bers; with a short sequence, we can ascertain the increment c quite easily.

Maximizing the sequence length: For what inputs c and m do we have
a maximal period? Do these values have to depend on each other?

The answer is actually c = 1 for any m; this essentially guarantees that you
hit every single integer from X0 to m−1, and then back around until you reach
X0 again.

6.2 The Linear Congruential Generator

The Linear Congruential Generator (LCG) is one of the easiest popular PRNGs
that’s still in use today for certain applications, and it is easy to teach owing to
its simple mathematical representation using only addition, multiplication, and
modulus. The most important thing to know about an LCG is its form, which
can be represented simply by the recurrence relation

Xn = (aXn−1 + c) mod m

for some parameters a, c, and m. Here,

1. m is the modulus

2. a such that (0 < a < m) is the multiplier

7

3. c such that (0 ≤ c < m) is the increment

4. As before, X0 such that (0 ≤ X0 < m) is the seed

Note again that after generating this sequence, we have to divide by the modulus
m to normalize our sequence to emulate the uniform distribution.

If c = 0, then this is a special case of the LCG that is called the Multiplica-
tive Congruential Generator or Lehmer RNG. Special consideration should be
made for the parameters a and m; the goal is to find an a and m such that the
period is long and sufficiently random.

Brief Interlude: Could you come up with some 3-tuple (a, c,m) that cre-
ates an obviously and intentionally poor LCG? Consider the case where you are
generating 100 numbers (this can play a part in your decision!)
Example: A possible answer could be (1, 0, 101), which results in the sequence
1, 1, . . . , 1, which is simply 100 ”1”s. Note how because the m I chose is above
the length of the sequence I want to generate, it does not even come into play.

6.3 The Hull-Dobel Theorem for maximizing an LCG’s
period

The Hull-Dobel theorem is a theorem that posits 3 constraints on the 3-tuple
(a, c,m) for an LCG to have a maximal period. We will not delve into the proof
of this theorem as it is somewhat involved, but I’m going to attempt to justify
the three conditions in an easier-to-understand manner.

Theorem 1 (Hull-Dobel Theorem). Let Xn = (aXn−1 + c) mod m be the
recurrence that defines an LCG. Then, the sequence defined by this recurrence
has full period m provided that

1. m and c are relatively prime, or coprime

2. a ≡ 1 mod p for all prime factors p of m

3. a ≡ 1 mod 4 if 4 is a factor of m

The proof in full can be found here, in the original paper [1]. It is somewhat
involved and is outside the scope of this discussion.

6.4 Example of the Hull-Dobel Theorem

Let’s now try using the Hull-Dobel Theorem with a = 165, c = 3,m = 25, which
are three contrived choices for numbers to demonstrate an application of this
theorem. The three important cases of the Hull-Dobel Theorem are:

1. m and c are relatively prime, or coprime; here, 3|168 (where a|b denotes
that b is divisible by a), so the condition fails. 3 · 56 = 165.

8

https://chagall.med.cornell.edu/BioinfoCourse/PDFs/Lecture4/random_number_generator.pdf

Figure 1: We can see that 15 distinct hyperplanes are created, telling us that
IBM’s RANDU fails to generate sufficiently random numbers in n ≥ 3 dimen-
sions.

2. a ≡ 1 mod p for all prime factors p of m: We can refactor this condition
into the question, ”is a− 1 divisible by p?” Then, we can see that 2 ∤ 167,
so this condition fails.

3. a ≡ 1 mod 4 if 4 is a factor of m: We can refactor this condition into the
question, ”is a − 1 divisible by 4?” Then we can see that 4 ∤ 167, so this
condition fails.

As an aside, a portion of the original paper does recognize that the frequency
with which people relied on m values of the form 2a + b for some a, b ∈ N,
especially because of the nature of binary operating systems which are still in
use today. This is partly the reason why the bottom two conditions are explored
in quite some detail in the paper.

6.5 IBM RANDU and Poor Input Selection

A very famous example of a PRNG implementation that suffered due to poor
inputs is IBM’s RANDU [5]. The inputs to the LCG are the 3-tuple (a =
65539, c = 0,m = 231), and these inputs produce exclusively odd integers as
outputs. We can show that these inputs are quite lackluster.

6.5.1 Modular Arithmetic for IBM RANDU

However, we’re going to show with some modular arithmetic that it gets much
worse! Note here that 65539 = 216+3, and with this we’re now going to attempt
to randomly generate a point in 3D space. Lets use (ix, iy, iz) to denote the 3
starting points. Given some seed for ix, we get iy and iz by

iy = (216 + 3)ix,

iz = (216 + 3)iy = (216 + 3)2ix = (232 + 6 · 216 + 9)ix

9

http://physics.ucsc.edu/~peter/115/randu.pdf

= (232 + 6 · (216 + 3)− 9)ix = 6iy − 9ix (mod 232)

We recall that we have to include the modulus operation, and 232 (mod 231) =
0. Then, we have some point 9ix−6iy+ iz. Finally, we divide by 231 as it is our
modulus and thus our normalization constant. With this operation, note that
9ix−6iy+iz

231 = 9x− 6y + z is divisible evenly by 231, so 9x− 6y + z is an integer.
In fact, with some further effort it can be shown that actually this integer is
limited to values of −5 and 9, which results in 15 clearly defined 2D planes in
3D space, as shown in 1.

7 Exercises

1. Solve some exercises from the Python file provided. For picking parame-
ters, this paper may be a good resource [2]. The goal of this file is to create
a series of examples that rely on the students creating their own simple
Python implementations of an LCG for a variety of purposes and applica-
tions. Finally, they will try to find good input parameters (a, c,m) such
that their LCG can pass the ”die-hard” tests, which are a famous testing
suite for statistical randomness. There would be zip file provided with a
file to write their code in, a file to run for testing, and a README.md
file for instructions.

2. Use a software tool and explore the random number generators it has
to offer (R, for example, has documentation regarding which PRNGs it
uses). Then, compare these PRNGs on a sample task such as randomly
populating a cube of side length n.

3. If you agree with my interpretation of the distinction between a random
number and pseudorandom number, try to come up with other interesting
examples of physically random systems that exist naturally, and argue
that they generate truly random numbers.

4. If you disagree with my interpretation of the distinction between a random
number and pseudorandom number, try to come up with a counterexample
that does not work with my definition.

For help with the last two, feel free to consult this link [3].

References

[1] T. E. Hull and A. R. Dobell. Random number generators. SIAM Review,
4(3):230–254, 1962.

[2] Pierre L’Ecuyer. Tables of linear congruential generators of different sizes
and good lattice structure. Mathematics of Computation, 68(225):249–260,
1999.

10

https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00996-5/S0025-5718-99-00996-5.pdf
www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Certification/Interpretations/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=7

[3] Werner Schindler. A proposal for: Functionality classes for random number
generators, Dec 1999.

[4] Sagar Sharma. What are /dev/random and /dev/urandom in linux?, Feb
2023.

[5] Peter Young. Physics 115/242 randu: A bad random number generator, Apr
2013.

11

	Introduction
	Randomness, Pseudorandomness, and Physically Random Systems
	What is a truly random number?
	Examples of Physically Random Systems (with caveats)

	Mathematical Primers
	Sequences of numbers
	What is a sequence?
	Recurrence Relations

	Modular Arithmetic
	Congruence
	Other Useful Properties
	How does the modulus play with sequences?

	Pseudorandom Number Generators
	Why are sequences and recurrence relations relevant to random number generation?
	Aside: Targeting a Distribution

	Period m of a PRNG
	What is the period of a sequence of pseudorandom numbers?
	Why do we want to maximize the period?

	More Concrete Examples of PRNGs
	The Counter
	The Linear Congruential Generator
	The Hull-Dobel Theorem for maximizing an LCG's period
	Example of the Hull-Dobel Theorem
	IBM RANDU and Poor Input Selection
	Modular Arithmetic for IBM RANDU

	Exercises

