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Gaussian Distribution

The intuition behind the derivation of the Gaussian distribution for a uni-
variate case starts with the examination of the exponential function:

ex – Exponential growth

e−x – Exponential decay

e−|x| – Modulus causes symmetrical decay

e−cx2
– where c is a scaling factor

Normalization

To ensure that the Gaussian function represents a probability distribution,
we need to normalize it so that its total area is equal to 1. This is achieved
by scaling the function by a factor of 1
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Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution is defined as:

p(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
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where:
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• x is an n-dimensional vector (finite)

• µ is an n-dimensional vector where each entry represents the mean of
the Gaussian univariate distribution for a particular random variable
X.

• Σ is the covariance matrix; each entry represents strength or correla-
tion between 2 random variables (n× n matrix)

Temperature Prediction Problem

Let’s say you’ve written down the temperature at three different times today,
like this:

• At 1 pm: 15 degrees Celsius

• At 2 pm: 19 degrees Celsius

• At 3 pm: 14 degrees Celsius

Our goal is to find the temperature at time t = 1.5 (1:30 pm), and we will
use a gaussian process to do so, involving the use of a kernel and covariance
matrix (explained below).

Definitions

RBF Kernel (A Magic Measure)

This is a way of measuring how closely related two different times are, based
on their temperatures. It uses a special dial called the ”length scale” to ad-
just the measurement. The length scale specifies how strong the correlation
drops from observation to observation (this allows us, for instance, to say
1 o’clock and 2 o’clock temperatures are more related than 1 o’clock and 3
o’clock temperatures).

Covariance Matrix (A Relationship Grid)

Think of this as a grid that helps us understand how each time we noted is
connected to every other time, showing us a pattern in temperature changes.
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How We Guess (The Prediction)

Using the relationship grid, we mix the temperatures we know and use them
to make a guess for the temperature at 1:30. This is the nature of a Gaussian
Process, which is simply a tool to predict values for data we do not have.
The machine learning aspect comes into play when the Gaussian Process
uses newly acquired data points from its old predictions to make better,
more accurate predictions.

Visualizing the Guesswork (3D Picture)

If we were to draw this out, we’d have a 3D chart where the width shows
the time, the depth shows the temperature, and the height shows how sure
we are about our guess.

The Nitty-Gritty Details

For the math behind this problem, here it is in full:

RBF Kernel

By convention, the RBF kernel is used the most in a Gaussian Process when
calculating the relationship between temperatures at different times. The
”magic measure” we talked about is calculated like this:

k(ti, tj) = exp

(
−(ti − tj)

2

2l2

)
(3)

Covariance Matrix

Our relationship grid looks something like this, after we’ve filled it in using
our measure:

K =

 1 e−0.5 e−2

e−0.5 1 e−0.5

e−2 e−0.5 1

 (4)

Guessing the Temperature

To make our guess, we calculate the new relationship values for 1:30 like so:

kT =
[
e−0.125 e−0.125 e−1.125

]
(5)
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And we update our grid to include this new time:

Σ =


1 e−0.5 e−2 e−0.125

e−0.5 1 e−0.5 e−0.125

e−2 e−0.5 1 e−1.125

e−0.125 e−0.125 e−1.125 1

 (6)

To explain this in words, let’s take the entry in row 1 column 2, which is
e−0.5. This represents the correlation between how similar temperatures are
at 1 pm and 2 pm. If we were to take row 1 column 4, which is e−0.125, this
represents the correlation between how similar temperatures are at 1 pm and
1:30 pm. These values in the covariance matrix help with determining the
mean and variance of temperatures at various times (in our case, predicting
the temperature at time 1:30). If we wanted to predict the temperature at
time t = 5 (5 p.m.), we would plug in 5 into the RBF kernel, obtain the
relationship values, and update our grid to include this new time accordingly.
This is how the covariance matrix expands to include relationships between
temperatures at observed times and temperatures at predicted times.

Mean Temperature at t = 1.5

To find out what the temperature was at 1:30 pm using Gaussian Processes,
we use the temperatures we recorded at three different times. Assuming
we don’t have any other information, we start with a mean function that
is zero. However, if we know something about the temperature trend, we
could start with a non-zero mean.

In our case, it doesn’t make sense to start at mean 0 at every time t
since the temperature cannot simply be assumed to be centered around 0
degrees. As such, by convention, the predicted mean temperature at a new
time t can be calculated using the formula:

µ(t) = KT
∗ K

−1y

Here’s what each term means:

• K∗ is a vector that tells us how the new time point t = 1:30 is related
to the times we already know.

• K is a matrix that tells us how all the times we know are related to
each other.

• y is a vector of the temperatures we’ve observed.
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Using the temperatures:

• At t = 1, y1 = 15◦C,

• At t = 2, y2 = 19◦C,

• At t = 3, y3 = 14◦C,

we can calculate K∗ using the Radial Basis Function (RBF) kernel with each
observed time point.

The next step is to invert the matrix K (which we have from earlier
calculations) and then multiply it by the vector K∗ and our observed tem-
perature vector y. This will give us our predicted mean temperature at
t = 1.5 or 1:30 pm. The specific values for K∗ and K will depend on the
length scale l used in the RBF kernel. It turns out that assuming l = 1, the
mean we get is around 18.11 degrees. This makes sense as it lies in between
the temperatures at time t = 1 and time t = 2.

Variance at t = 1.5

The prediction variance for temperature at time t = 1.5 is:

σ2 = K∗∗ −Kθ(Kθθ)
−1KT

θ (7)

Definitions for the Prediction Variance Equation

The equation you’re looking at is all about figuring out how much we can
trust our temperature prediction for a time we didn’t measure. Here’s what
each symbol means:

• σ2: This represents the variance of our prediction. It’s a number that
tells us how certain or uncertain our guess at the temperature is. The
bigger this number, the less sure we are.

• K∗∗: This is the variance we expect at the new time point we’re in-
terested in. It comes from our magic measure when we compare the
time to itself.

• Kθ: This represents how the time we want to predict (1:30 pm) is
related to the times we’ve already measured.

• Kθθ: This is our relationship grid for the times we’ve actually mea-
sured. It’s like a mirror that shows us how they all relate to each
other.
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• (Kθθ)
−1: This is the inverse of Kθθ

• KT
θ : This is the transposed version of Kθ.

And when we put it all together in the equation, it gives us a number that
says, ”Based on the temperatures we know, this is how sure we are about
our guess at 1:30 pm.” It turns out the variance for our specific scenario is
equivalent to 0.018.

3D Visualization

If we wanted to show this visually, here’s a figure showing a simulation of
our prediction. At time t = 1.5 = 1:30 pm, we calculated that the mean
= 18.11 degrees and that the variance = 0.018. Therefore, at time t =
1.5, there will be a univariate gaussian distribution centering around 18.11
degrees and variance 0.018. This process can be repeated for other times
as well, resulting in a collection of univariate gaussian distributions. This is
what causes the 3-D nature of the multivariate gaussian distribution.

Figure 1: Example Python Matplotlib Simulation of Gaussian Process using
Time and Temperature as inputs.

Inherent Flaw (The Catch)

You might wonder how we can predict temperatures at times we didn’t
measure. Well, we do this by making a series of educated guesses at certain
times and then connecting the dots to see the bigger picture.
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Application in Real Life (Practical Use)

In real-life projects, like making sure self-driving cars know which way to
go, this math helps us predict things like traffic conditions.

Conclusion (The Takeaway)

This whole process is about making smart guesses for things we don’t know
for sure, like temperature at different times, and it’s super useful for things
like planning the paths for self-driving cars.
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Problems for Practice

Problem 1: Basic Probability Calculation

Given a univariate Gaussian distribution with mean µ = 0 and standard
deviation σ = 2, calculate the probability of the random variable X falling
between -1 and 1.

Problem 2: Covariance Matrix Analysis

Consider a bivariate Gaussian distribution with the following covariance
matrix:

Σ =

[
1 0.5
0.5 2

]
So far, we have looked at how to construct the covariance matrix. Now,

let’s see if we can find the strength of the relationship. See if you can find
the correlation between the two variables and comment on the strength of
their relationship.

Problem 3: Gaussian Process Prediction

Using the Radial Basis Function (RBF) kernel and the covariance matrix
provided, calculate the Gaussian Process prediction and the confidence in-
terval for a temperature at t = 4 given the following observed temperatures:

• t = 1: 15◦C

• t = 2: 18◦C

• t = 3: 20◦C

Assume a length scale l = 1 for the RBF kernel.

Problem 4: Designing a Kernel Function

Design your own kernel function that could potentially capture periodic
patterns in temperature data, such as daily temperature cycles. Describe
its form and explain the choice of parameters.
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Answers to Practice Problems

Answer to Problem 1

The probability of a univariate Gaussian random variableX falling between -
1 and 1 is found by calculating the integral of the probability density function
from -1 to 1:

P (−1 ≤ X ≤ 1) =

∫ 1

−1

1

2
√
2π

e−
x2

8 dx

This integral can be evaluated using standard Gaussian tables or a com-
putational tool.

Answer to Problem 2

The correlation coefficient ρ between two random variables in a bivariate
Gaussian distribution is the off-diagonal element of the covariance matrix
divided by the product of the standard deviations of the two variables:

ρ =
Σ12√
Σ11Σ22

=
0.5√
1 · 2

=
0.5√
2
≈ 0.354

A correlation of 0.354 indicates a moderate positive linear relationship
between the two variables.

Answer to Problem 3

The Gaussian Process prediction for a temperature at t = 4 is calculated
using the kernel function and the covariance matrix. Assuming the mean
of the predictions is 0 (common assumption in GP), the prediction is the
product of the inverse of the covariance matrix K and the vector k. The
confidence interval can be calculated from the predictive variance, which is
the diagonal of the matrix K∗∗ −K(X∗, X)(K(X,X))−1K(X∗, X)T .

Answer to Problem 4

Answers may vary: A possible kernel function capturing periodic patterns
could be the Periodic Kernel defined as:

k(ti, tj) = exp

(
−2 sin2(π|ti − tj |/p)

l2

)


