
An Interesting Solution to the Decaying Number Game Using a

Continuous Markov Chain

Sena Ghobadi

December 13, 2023

Sena Ghobadi MATH 3215 - Project 1

Scenario

Consider the uniform probability distribution from [0,1]. Let us imagine a game somewhat analogous to
blackjack where we draw numbers from this distribution in series. We keep drawing numbers as long as they
are smaller than the previous draw. The game is finished when a number greater than the previous number
is drawn. We may then ask the following question.

Problem

What is the expected number of draws that you make before ”busting”? We define ”busting” as drawing a
number smaller than the previous one drawn.

Approach

Intuition suggests that you shouldn’t be able to draw more than a couple numbers without busting. We
expect to draw a value of 0.5 first on average which already cuts the space of possibilities in half. One may
then naively suggest that the answer may be the sum of 1

2n from 1 to ∞. However, this solution simply
ignores the space of all possibilities, and one may easily disprove this by considering what the expected second
draw would be. This may be found by manually integrating over the space of possibilities after two draws
0 < y < x < 1 which encompasses the volume below∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

dz dy dx =
1

6

Therefore, a more sophisticated solution is necessary. The method that I initially solved this problem with
(and the one that seems to be the most common) is based on an analysis similar to what we described above.
However, I will take a more unique approach using the machinery of Markov processes that we discussed in
the latter half of the semester. In particular, we will derive a unique solution that utilizes an infinite number
of Markov states.

The best way to solve a difficult problem is to ignore it and solve an easier problem. Let us consider
a discrete uniform distribution instead with only 3 possible values to be drawn (one may imagine a small
deck of cards): 1, 2, and 3. We will play the same game as described above with us drawing numbers from
this deck (with replacement) until we obtain a number greater than or equal to the current one (we set the
drawing of 1 as a bust condition too). However, even this involves an annoying amount of counting, so we’ll
simplify it even further by considering the case of only 1 value and building up to 3 where we will hopefully
have obtained some information that allows us to solve the original problem. For the case of a single card,
the answer is trivial. We only have 1 value to draw and after that there are none left, so the expected number
of draws must be 1. We will call this m1 and, in general, refer to the expected number of draws at any value
i as mi. For the case of 2 cards, we still get 1 draw for free, but if we draw the smaller one, we are done.
There is a 1

2 probability of drawing the larger one, after which we either bust by picking 2 again, or bust by
exhausting the deck and drawing 1. Therefore, m2 = 3

2 . However, I will elect to represent this as

m2 = 1 +
1

2
m1

. For the case of m3, we again note that we get 1 draw for free. There is a 1
3 chance of it being any of the 3

possible cards. In the case of drawing 1, we are finished. In the case of drawing 2, we have a 1
3 chance of

drawing 1 next and a 2
3 chance of busting. We will represent this as a possible state transition from m3 to

m1. Likewise, in the case of drawing 3, we have a 2
3 probability of not busting by drawing 3 again, which

would transition us to state m2. Of course, there is a 1
3 probability of busting by drawing 3. We can then

represent all these possibilities in the following state transition equation for m3.

m3 = 1 +
1

3
((
1

3
m1 +

2

3
) + (

2

3
m2 +

1

3
))

m3 = 1 +
1

3
(
1

3
(m1 + 2m2) +

1

3
(1 + 2))

1

Sena Ghobadi MATH 3215 - Project 1

m3 = 1 +
1

9
((m1 + 2m2) + (1 + 2))

This would mean that m3 evaluates to 16
9 which is about 1.78. The Monte Carlo simulation of this game in

the appendix of this paper validates these results as well as other computations we make later on. This same
reasoning can be used for m4, m5, and in general mi. Therefore, we may inductively represent the expected
value of draws (proving this is an exercise at the end) before busting from a deck of n cards as

mn = 1 +
1

n2

n−1∑
i

(mi + 1)i

We now have an expression that will compute the expected number of draws for a deck with finite elements. To
extrapolate this analysis to our original problem, we will take the limit as the number of elements approaches
infinity. However, our expression is unfortunately a recurrence relation that relates every single previous
state, leaving us with no closed form for mn. There is a creative workaround to this issue. Though we may
not be able to solve this incredibly complicated difference equation, in the limit of n → ∞, we may be able to
express this (Riemann) sum as an integral and derive a solvable differential equation. It is important that we
consider the most general case of a draw where we might not be bounded between [0,1], but rather between 0
and some intermediate pick x. Therefore, we consider

mx = 1− x+
1

n2

x−1∑
i

(mi + 1)i

The (1− x) term represents the probability of bust (with 1 being the resulting expected number of draws)
which is something we have to consider in the general case where we’ve already used our ”free” draw. The
only real work left is to transform the sum into an integral. Though the machinery of real analysis is likely
necessary to perform this rigorously, there are a few heuristics from calculus that we may use. We note that
in the limit of n approaching infinity, 1

n represents a very small change in summing window if we divide our
integration interval into n pieces which we can intuit as dx′. We evaluate this sum over bounds determined
by the previous draw x, which corresponds to us integrating the value of m+ 1 over the non-busting range
[0,x]. Thus, we have the integral equation

m(x) = 1− x+

∫ x

0

(m(x′) + 1)dx′

This satisfyingly corresponds to the same idea we explored in the discrete case. The expected number of
draws from a particular state m(x) is the probabilistic weighted sum of the states m(< x). The 1− x term
corresponds to the idea that there is a 1 − x probability of busting and leaving with only one draw. We
observe the advantages of this approach by differentiating this expression to get a very simple differential
equation,

dm

dx
= m(x)

which has the well-known solution
m(x) = Cex

You may have guessed that e was involved in this problem from the progression of expected draws (i.e. 1/2,
1/6, etc) and indeed, this is another way of solving the problem. But to finally obtain an answer we need to
define our integration constant using boundary conditions. As described in our setup, we required a bust
once the smallest value was reached. However, we always get 1 draw for free, which specifies that m(0) = 1,
implying C = 1. The value encompassing the entire interval is 1, so our answer is simply

m(1) = e

The fact that e shows up seemingly out of nowhere is quite interesting, and I encourage you to solve this
problem with a more traditional probability approach, inductively evaluating the probability that the draws
x1 > x2 > x3 . . . using counting arguments rather than the Markovian approach above.

2

Sena Ghobadi MATH 3215 - Project 1

Related Problems

1.

Prove the general solution for the expected number of discrete draws that we defined above using induction.

2.

Solve the decaying number problem by considering the exact probability of busting at each given step and
taking a sum of the results (this will be easy to evaluate unlike the one we derived). For example, consider
the probability of getting exactly 4 picks as the probability of x4 > x3 and x3 < x2 < x1 where xn is the nth
draw.

3.

What is the lowest value you expect to draw from this game?

4.

Now consider a ”different” problem where you are still drawing values from the uniform distribution, but you
keep drawing until the sum of your values exceeds 1. What is the expected number of draws before busting?

5.

Given the scenario in problem 4, what is the expected sum of the values you draw? Hint: This should be
really easy! However, it’s worth thinking about why such a naive approach works.

3

Sena Ghobadi MATH 3215 - Project 1

Appendix: Monte Carlo Code

import random
import numpy as np
#r s e t = [1 , 2 , 3 , 4] #f o r d i s c r e t e case
r s e t = np . l i n s p a c e (0 ,1 ,10000) #f o r cont inuous case
N = 100000 #number o f MC i t e r a t i o n s
pcount = 0 #record draws f o r each t r i a l

random . seed (1)
f o r i in range (N) :

prev = 1
n = 0
whi le True :

draw = random . cho i c e (r s e t)
n += 1
i f draw >= prev :

break
e l s e :

prev = draw
pcount += n

pr in t (pcount/N)

#eva lua t e s to 2 .718 ˜ e

4

