Dice probabilities in relation to geometry

By Danny Schultz

Loaded dice:

- Dice with weights in them
- Provides uneven odds
- Often used for cheating
 - Provides users with an unfair advantage

Geometry relationships

- Changing geometry of dice changes weight distribution
- Dice with uneven sides have uneven odds
- Is there a relationship between unevenness and probability?

The experiment

- 5 types of dice
 - Tetrahedron
 - Cone
 - Frustum
 - Bicone
 - Rectangular Prism
- 25 values of unevenness
 - o 0.1-2.0
 - Increments of 0.1
 - o 2.5-4.0
 - Increments of 0.5
 - o 5.0
- 10,000 Simulated attempts per dice
- 1,250,000 total dice rolls

Tetrahedron dice

- Base height of 1:
 - Height is 1
 - \circ All side lengths are the same
 - 1.22 each
- 4 Sides
 - Blue base (constant)
 - Red, green, and yellow sides (dynamic)

Cone dice

- Base height of 0
 - Would be a perfectly flat plane
 - Would not work with my simulation
 - Not used
 - If it was used it should yield results seen in a standard coin
 - \circ Lowest height used is 0.1
- 2 sides
 - Blue base (constant)
 - Red top (dynamic)
- Other stats
 - \circ Radius of the base is 1
 - Base of the cone is an octagon in place of a circle
 - Due to performance

Frustum dice

- What a frustum is
 - The bottom part of a cone
 - A frustum can be made by taking a cone and cutting the top of it off
- Base radius is 1
 - The blue face's radius remains constant
 - The red face's radius is what is being adjusted
 - When the red face's radius is 1 the dice is technically a cylinder / and models an even coin
- 3 sides
 - Blue base (constant)
 - Red top (dynamic)
 - Green sides (dynamic)
- Other stats
 - Blue and red faces are octagons
 - Height is 0.1
 - The face the frustum "lands on" is the face that is down

Bicone dice

- Base height of 1
 - Height of both red and blue cones are 1
- 2 sides
 - Blue cone (constant)
 - Red cone (dynamic)
- Other stats
 - Bicone's center ring is an octagon
 - Blue cone's height is always 1

Cube dice

- Base height 1
 - \circ Cube with all side lengths 1
- 6 sides
 - Blue base (constant)
 - Cyan top (constant)
 - Red, Green, Yellow, and Magenta sides (dynamic)

The simulation

- Made in godot
 - Game engine
- Constantly spawn in up to 100 dice.
 - Give each dice a random velocity and angular velocity.
- Keep the dice within bounds.
- When a dice loses all speed record its result.
 - Calculate which face of the mesh is lowest.
- Took a few days to run all 1,250,000 dice
- Link to the project
 - <u>https://github.com/DannySchultzDev/Dice-Simulation</u>

Spinning

- To prevent dice from getting stuck in the ground, if a die was ever alive for too long its side was recorded as if it had landed.
- Due to the large angular speed given to the frustum dice, they had a tendency to spin for so long that they would be deleted while spinning.
- On my initial simulation run, the frustum dice frequently landed on their green side as an outcome, especially as the difference between radiuses increased.
- Due to this issue I reran the simulation with a higher cutoff time, this mostly fixed the issue and gave me twice as much data

Tetrahedron

10000

.

Cone

Cube

Frustum

Results

.

6

Tetrahedron (results)

- One oddity is that the green side consistently came up less often than other sides when the height was <.4
 - The red, yellow, and green sides are identical so this is a strange result
- Another oddity that landing on the constant face did not approach .5 as the dice's height approached 0
 - It was expected to model the results of a coin as the dice became flat
- These oddities could be due to running too many objects in the simulation at once, or possibly other errors. More testing is required.

Cone dice

• An interesting observation is that the odds become more fair when the cone approaches a height of .7

- Surprisingly changing the radius of one side of the frustum did not seem to change the probability of the dice landing on the top or bottom face.
- Changing the radius of the frustum did change the time it took for the dice to come to a halt.
 - This can be seen from the program hitting the failsafe and recording the bottom face as green (a side face).
 - When the dice was at its base position (the dynamic face had a radius of 1) it was never still spinning.

- Odds remain relatively constant from heights of .2 to .8.
- Odds become more fair as height approaches 1.3.
- Similar to the frustum dice the bicone dice can spin so long that they exceed the initial failsafe time as they get longer.

Cube dice

- Most simple distribution
- Desmos does not have cyan as a selectable color
 - I represented it with black in the presented graph
- Shorter cubes got stuck in the ground frequently

Thank you for listening!

