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1. Introduction
Problem 3 from Problem Set 1 in Orloff and Booth presents the following

scenario:

Ignoring leap days, the days of the year can be numbered 1

to 365. Assume that birthdays are equally likely to fall on

any day of the year. Consider a group of k people, of which

you are not a member. An element of the sample space Ω

will be a sequence of n birthdays (one for each person).

Assigning each subsequent day of the year to natural numbers from 1 to 365 (i.e.

January 1st = 1, January 2nd = 2, …. December 31st = 365), the set S can model

the possible birthdays such that

S = {1, 2, 3, …, n}
where n is the number of all possible birthdays in a given year. Ignoring leap

years, we will assume n = 365. Since the sample space Ω is the set containing all

sequences of 𝑆𝑘

𝑆𝑘  = {𝑏 =  (𝑏
1
,  𝑏

2
,  ....,  𝑏

𝑘
) :  𝑏

𝑖
∈ 𝑆}  

We assume all birthdays are equally likely to occur (although we will see later

that this is not the case), and there are sequences of k potential birthdays.365𝑘

The uniform probability measure assigned to each sequence of birthdays is

π(𝑏) =  1

365𝑘

In particular, we are interested in finding out the probability that given a

collection of k people, what is the probability of at least m of them sharing the
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same birthday? We will formulate a mathematical model to investigate the

probability of shared probabilities within a group of people, beginning with the

base case m = 2 before expanding to explore the probabilities for different values

of m and k (m = 3, k = 3, k = 4). We will also simulate the event of m shared

birthdays using the colMatches function in R. Finally, we will look at how our

expected uniform distribution of birthdays does not hold true in real life (some

birthdays are more common than others), and how this skewed distribution

increases the probability of matching birthdays for a fixed k.

2. Model
As established in the introduction, for the purposes of the model we assume that

all birthdays to be equally likely to occur such that

π( 𝑆𝑘 ) =  1

365𝑘

Let us establish the set , representing the set of k-tuples with distinct birthdays:𝐷
𝑘

𝐷
𝑘
 =  {𝑏 ∈ 𝑆𝑘 :  𝑏

𝑖
 ≠  𝑏

𝑗
 ,  𝑖 ≠  𝑗} 

Where, since k and n are distinct elements with no repetitions allowed, the

number of elements in 𝐷
𝑘

#𝐷
𝑘

= 𝑃(𝑛, 𝑘) =  𝑛!
(𝑛−𝑘)!

which is equivalent to the count of different ways of selecting k distinct birthdays

from a total of n distinct possible dates. If k > n, , since at least one#𝐷
𝑘
 =  ϕ

birthday must overlap.

Let us also establish , the set of k-tuples where exactly ℓ individuals share𝑀
𝑙
(𝑘)

the same birthday within the group of k people -- it contains sequences where the
most frequently occurring birthday within the group of k people happens ℓ times.

𝑀
𝑙
(𝑘) = {𝑏 ∈ 𝑆𝑘 : 𝑚𝑎𝑥

𝑗 = 1,...,𝑘
 #{𝑖 ∈ {1,..., 𝑘} :  𝑏

𝑖
 =  𝑏

𝑗
} = 𝑙} 
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The union of sets for l ranging from m to k represents the combined set of𝑀
𝑙

sequences where the maximum count of any specific birthday within the sequence

falls within the range from m to k.

𝑙 = 𝑚

𝑘

⋃ 𝑀
𝑙
 

This union captures all sequences where there are at least m shared birthdays

within the group of k people. To find the probability of at least m shared birthdays

within a group of k people, we find the product measure of this set such that:

π(
𝑙 = 𝑚

𝑘

⋃ 𝑀
𝑙
) =  

# (
𝑙 = 𝑚

𝑘

⋃ 𝑀
𝑙
)

#Ω  = 1

365𝑘
𝑙=𝑚

𝑘

∑ #𝑀
𝑙

We must also set some bounds for m and k before going further into our analysis.

The probability of at least one person sharing the same birthday (m = 1) is 1,

because every person at least shares a birthday with themselves. We can also

reasonably deduce that most k people can share the same birthday--that is, every

single person in the collection has the same birthday. The probability again

approaches 1 when k becomes too big--if, for example, m = 2, and k > 365, then

there must be at least two people sharing the same birthday, since at most only

365 people can have unique birthdays in a given year. Thus, a more practical

approach to the problem would be to investigate the cases where

.2 ≤  𝑚 ≤  𝑘 ≤ (𝑚 −  1)𝑛

3. Case 1: m = 2
We want to find the probability that at least 2 among k people share the same

birthday, or

𝑙 = 2

𝑘

⋃ 𝑀
𝑙
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Another way to approach this problem is by assuming that at most one birthday is

shared, which is equivalent to the statement that every birthday is distinct. The

complement to this event would be that at least two people share the same

birthday. Thus we know that

𝑙 = 2

𝑘

⋃ 𝑀
𝑙

= 𝑆
𝑘
\𝑀

1

where . We’ve already established while k is at most n.𝑀
1

= 𝐷 #𝐷
𝑘

= 𝑃(𝑛, 𝑘) 

By the property of the complement of a set ,𝑀
2

⊂ 𝑆
𝑘

𝑙=𝑚

𝑘

∑ #𝑀
𝑙

= 𝑛𝑘 − 𝑛!
(𝑛−𝑘)!

Substituting this into the formula for the product measure on that we
𝑙 = 𝑚

𝑘

⋃ 𝑀
𝑙

found earlier, we find that

𝑝(𝑘; 2, 𝑛) =  1

𝑛𝑘 (𝑛𝑘 − 𝑛!
(𝑛−𝑘)! ) = 1 −  𝑛!

𝑛𝑘(𝑛−𝑘)!

we also know that n = 365, therefore for ,𝑘 ≤ 365

𝑝(𝑘; 2, 𝑛) = 1 − 365!

365𝑘(365−𝑘)!

When k exceeds n, since there can only be n unique𝑝(𝑘; 2, 𝑛) = 1

birthdays, and so there must be at least two people whose birthdays

overlap.

4. Case 2: m = 3

a. k = 3
We want to find the probability that all 3 people share the same

birthday, or

, k = 3
𝑙 = 3

𝑘

⋃ 𝑀
𝑙
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In the case where m = 2, we did not have to directly compute the

value of because we found the cardinality of the
𝑙=2

𝑘

∑ #𝑀
𝑙

complement to . We could try to find the probability that two or𝑀
2

less people share the same birthdays and use the property of set

complements like we did in case 1, which would be tedious.

However, we know that , since all 3 people share
𝑙=3

3

∑ #𝑀
𝑙

=  365

the same birthday and there are 365 possible days that the shared

birthday could fall on.

𝑝(3; 3,  𝑛) = 𝑛

𝑛𝑘 = 1

𝑛𝑘−1 = 1

3652 ≈ 7. 506 × 10−6

We can also arrive at this solution by breaking apart the problem

more intuitively--person A could have a birthday on any day of the

year, and the probability of them having a birthday that falls

between 1 and 365 is 1. We have already established that the

sample space admits a uniform product measure, and thus theΩ

probability of persons B and C being born on that particular day

would be . By the Bayes Theorem, assuming each1
𝑛 = 1

365

persons’ birthday is independent of the others, we find

𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) =  𝑃(𝐴) × 𝑃(𝐵) × 𝑃(𝐶) =  1

3652

b. k = 4
Things become slightly more challenging when k = 4. Again, we cannot

use the same formula derived from Case 1. Instead, we can split this into

two parts: there are exactly 3 people who share the same birthday, and

there are exactly 4 people who share the same birthday.

To calculate the probability that there are exactly 3 shared birthdays, we

must manually calculate the sum of the count of k-tuples with exactly 3
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shared birthdays. There are ways that 3 out of 4 people can𝑃(4, 3) =  4 

share the same birthday. There are 365 potential days that the shared

birthday can fall on, and 364 potential days for the distinct birthday.

𝑃(4,3)× 365×364

3654 = 2. 994 × 10−5

To calculate the probability that there are exactly 4 shared birthdays, the

process is similar to Case 2.a, where we found 3 shared birthdays among 3

people. We know that , since there are way
𝑙=4

4

∑ #𝑀
𝑙

=  365 𝑃(4, 4) = 1 

that all 4 people can share the same birthday, and there are 365 potential

dates that the same birthday can fall on.

𝑝(4; 4,  𝑛) = 1

𝑛𝑘−1 = 1

3653 ≈ 2. 056 × 10−8

Summing the two cases, we find that

𝑝(4; 3,  𝑛) ≈ 2. 996 × 10−5

5. Other Things to Consider
The following scenarios are presented in Orloff and Booth:

a. Event A: “someone in the group shares your birthday”
Note that you are not a part of the group of k people.

(Solution) Taking a similar approach to the case that m = 2, if we calculate

the probability of event : no one from the group shares the same𝐴𝑐

birthday as you and subtract that from the probability of the entire sample

space , which is always 1, we can find by the property of setΩ 𝑃(𝐴) 

complements. , since for each k persons there are 364#𝐴𝑐 = 364𝑘

potential birthdays that do not overlap with your birthday, and .#Ω =365𝑘

𝑃(𝐴) =  1 − 𝑃(𝐴𝑐) = 1 − 364𝑘

365𝑘
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b. Find the minimum number of people k such that p(k; m, n) meets a

probability threshold q

For example, what is the smallest k such that the

probability of at least two people sharing the same birthday

is greater than 0.50?

(Solution) Using the formula from Case 1, we can

rearrange the variables to find that for k > 22, the

probability of at least two shared birthdays exceeds 0.50.

or1 − 𝑛!

𝑛𝑘(𝑛−𝑘)!
 ≥  𝑞 𝑛𝑘(𝑛 − 𝑘)! ≥  𝑛!

1−𝑞  

We can also use this formula on the event from 5.a to find

the smallest k such that

𝑃(𝐴) =  1 − 364𝑘

365𝑘 =  0. 5

(Solution) Rearranging the variables, we get

364𝑘

365𝑘 =  0. 5

which we can further simplify down to

𝑘 × 𝑙𝑛( 364
365 ) =  𝑙𝑛(0. 5) 

𝑘 ≈ 252. 65 
Thus, the smallest k such that is 253 people.𝑃(𝐴) >  0. 5 

Repeating trials using R simulation yields similar results.

Notice that 253 is greater than 365/2 -- this is because the

birthdays are not guaranteed to be unique. 365/2 people

may have overlapping birthdays, thus decreasing the

probability of matching your birthday.
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6. Real-Life Application
In reality, some birthdays tend to occur more frequently than others, as displayed

by the graph from Chris Mulligan below. Note that this data comes from 2012,

over a decade ago, and thus may not be the most accurate--it still presents an

interesting aspect of the birthday problem to take into consideration.

The birth rate on average increases during the first half of the year, reaching its

peak around September, before declining. There are a few interesting spikes as

well as drops on specific days as well--notably centered around global holidays

like Christmas. Since some birthdays occur at a higher frequency than others (i.e.

December 30th versus January 1st), for a fixed number of k people, a matched

outcome is more probable than using the equal-probability model that we’ve

adopted for our analysis.

7. Appendix: colMatches
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The colMatches function, which is an 18.05 function, within the context of

birthday probability, counts the number of shared birthdays or matches

within a group of individuals

Simulating at least 2 people sharing the same birthday (m = 2)

# Setting up parameters

source(“colMatches.r”)

days = 365 # Total number of days in a year

people = 25 # Number of people in each trial

trials = 10000 # Number of simulation trials

sizematch = 2 # Desired size of the match (at least two people

sharing a birthday)

year = 1:days # Days in a year

# Generate random birthdays for all trials

y = sample(year, people * trials, replace = TRUE)

trials = matrix(y, row = people, col = trials)

# Use colMatches function to count matches of size sizematch

within each trial

matches = colMatches(trials, sizematch)

# Calculate the probability of having at least sizematch people

sharing a birthday within each trial

prob_match = mean(matches)

To simulate at least 3 people sharing the same birthday (m = 3), we just

update sizematch to 3 for the same code.
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