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1 Background
To preface this derivation, I first want to discuss the general idea behind regression. The
general principle behind regression is that we have this outcome variable, denoted as Y ,
which we want to model using some explanatory variables x. Note that in this case x is a
singular set of explanatory variable values and Y is a singular set of outcome variable values
such that xi corresponds to value Yi. In this particular derivation, we assume that there
exists some linear relationship between x and Y such that for any given datapoint i,

Ŷi = β0 + β1xi

There are two main reasons why you would want to use a regression model.

1. ”Predict” or estimate a future value of Yi given xi.

2. ”Quantify” the the relationship between Yi and xi. This means that for every increase
in a unit of xi you want to find how Yi changes.

The simplest form of a simple linear regression model just equates the outcome variable Yi

with the linear estimation function, adding error term ϵi to model the discrepancy between
the Ŷi and Yi. This gives us

Yi = β0 + β1xi + ϵi

.

2 Normal Distribution
Before discussing Y and x as variables, let’s discuss them as random selections along a normal
distribution. Specifically, let Y be modeled by N(µ, σ2). Note there is no dependence on
x meaning that we can model Yi solely using µ and ϵi where ϵi is the deviation from the
mean. This gives us

Yi = µ + ϵi

Given this model of Yi we can deduce, given n randomly selected points of the distribu-
tion N(µ, σ2), what the mean is given these points. This is given by the function (which
represents the likelihood of µ given Yi and the distribution N(µ, σ2). This yields

L(µ|Y ) =
n∏

i=1
P (Yi|µ, σ2) =

n∏
i=1

1
σ

√
2π

e− (Yi−µ)2

2σ2
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Given this, we can now use maximum likelihood estimation to determine a value for µ. This
gives us

µ̂ = arg max
µ

L(µ|Y ) = arg max
µ

n∏
i=1

1
σ

√
2π

e− (Yi−µ)2

2σ2

= arg max
µ

log
( n∏

i=1

1
σ

√
2π

e− (Yi−µ)2

2σ2
)

= arg max
µ

n∑
i=1

log( 1
σ

√
2π

) + log(e− (Yi−µ)2

2σ2 )

= arg max
µ

n∑
i=1

log(e− (Yi−µ)2

2σ2 )

= arg max
µ

n∑
i=1

− (Yi − µ)2

2σ2

= arg min
µ

n∑
i=1

(Yi − µ)2

With this value for µ̂ we can now take the partial derivative with respect to µ and set it to
0 to determine what the expected value of µ is. This gives us

∂

∂µ
log L(µ|Y ) = 0

∂

∂µ

n∑
i=1

(Yi − µ)2 = 0

n∑
i=1

−2(Yi − µ) = 0

nµ =
n∑

i=1
Yi

µ = 1
n

n∑
i=1

Yi

This implies that E[Y ] = µ.

Quick Aside
In regression analysis, it’s crucial to recognize that Y is a random variable (a function that
maps from sample space to measure space), not a deterministic function of x. When cor-
rectly modeled, the distribution of Y appears bell-shaped and centers around the mean µ in
a histogram. A common misunderstanding arises when the error term ϵ is de-emphasized,
leading some to incorrectly assume Y is fixed at µ. Instead, y’s values are normally dis-
tributed around µ, with µ representing the expected value.
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3 Regression
Given that we are now taking Y to be a random variable, we can now model the expected
value of Yi given the explanatory variable xi. This gives us

E[Yi|xi] = β0 + β1xi

Combining this with E[Y ] = µ, we have that

Y ∼ N(β0 + β1x, σ2)

This implies that Yi is a random normal variable with an expected value of β0 +β1xi. Given
this, we now aim to estimate for β0 and β1 parameters.
Using maximum likelihood estimation and the same steps we used to find the estimation of
µ̂ we get

β = arg min
β

n∑
i=1

(Yi − (β0 + β1xi))2

= arg min
β

n∑
i=1

(Yi − Ŷi)2

This gives us an equation that is commonly known as ordinary least squares. Now to solve
for β0 and β1. Note that β̂0 and β̂1 represent the estimators for the parameters.

Solving for β0

The partial derivative of β with respect to β0 is:

∂β

∂β0
= −2

n∑
i=1

(Yi − β0 − β1xi)

Setting ∂β
∂β0

equal to zero gives us

−2
n∑

i=1
(Yi − β̂0 − β̂1xi) = 0

n∑
i=1

Yi − nβ̂0 − β̂1

n∑
i=1

xi = 0

Solving this equation for β̂0 gives us

β̂0 = 1
n

n∑
i=1

Yi − β̂1

n

n∑
i=1

xi = Ȳ − β̂1x̄

where Ȳ and x̄ is the mean of Y and x respectively.
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Solving for β1

Similarly, the partial derivative with respect to β1 is:

∂β

∂β1
= −2

n∑
i=1

xi(Yi − β0 − β1xi)

Setting ∂β
∂β1

equal to zero gives us.

−2
n∑

i=1
xi(Yi − β̂0 − β̂1xi) = 0

n∑
i=1

xiYi − β̂0

n∑
i=1

xi − β̂1

n∑
i=1

x2
i = 0

β̂1

n∑
i=1

x2
i + β̂0

n∑
i=1

xi =
n∑

i=1
xiYi

β̂1

n∑
i=1

x2
i +

(
Ȳ − β̂1x̄

) n∑
i=1

xi =
n∑

i=1
xiYi

β̂1

(
n∑

i=1
x2

i − x̄

n∑
i=1

xi

)
=

n∑
i=1

xiYi − Ȳ

n∑
i=1

xi

β̂1 =
∑n

i=1 xiYi − Ȳ
∑n

i=1 xi∑n
i=1 x2

i − x̄
∑n

i=1 xi

The numerator can be expressed as
n∑

i=1
xiYi − Ȳ

n∑
i=1

xi =
n∑

i=1
xiYi − nx̄Ȳ

=
n∑

i=1
xiYi − nx̄Ȳ − nx̄Ȳ + nx̄Ȳ

=
n∑

i=1
xiYi − Ȳ

n∑
i=1

xi − x̄

n∑
i=1

Yi +
n∑

i=1
x̄Ȳ

=
n∑

i=1

(
xiYi − xiȲ − x̄Yi + x̄Ȳ

)
=

n∑
i=1

(xi − x̄)(Yi − Ȳ )

The denominator can be expressed as
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n∑
i=1

x2
i − x̄

n∑
i=1

xi =
n∑

i=1
x2

i − nx̄2

=
n∑

i=1
x2

i − 2nx̄x̄ + nx̄2

=
n∑

i=1
x2

i − 2x̄

n∑
i=1

xi −
n∑

i=1
x̄2

=
n∑

i=1

(
x2

i − 2x̄xi + x̄2)
=

n∑
i=1

(xi − x̄)2

Given this we get

β̂1 =
∑n

i=1 xiYi − Ȳ
∑n

i=1 xi∑n
i=1 x2

i − x̄
∑n

i=1 xi

=
∑n

i=1(xi − x̄)(Yi − Ȳ )∑n
i=1(xi − x̄)2

4 Findings
With all this in mind we find that

β̂0 = Ȳ − β̂1x̄

β̂1 =
∑n

i=1(xi − x̄)(Yi − Ȳ )∑n
i=1(xi − x̄)2
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5 Additional Problems
1. Find E[β̂0]

2. Find V [β̂0]

3. Find E[β̂1]

4. Find V [β̂1]

5. What do you notice about β̂0 and β̂1 based on there expected values? Are the esti-
mators biased? (Hint: I’m BLUE da ba dee da ba di)
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