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Chebyshev’s inequality asserts the following: If δ : R → [0,∞) is an MDF (mass
density function) for a probability measure, that is,

∫

R

δ = 1, (1)

with well-defined mean

µ =

∫

ω∈R

ωδ(ω)

and variance

σ2 =

∫

ω∈R

(ω − µ)2δ(ω),

then for k ≥ 1,
∫

ω∈[µ−kσ,µ+kσ]

δ(ω) ≥ 1− 1

k2
.

1 Special case; strict inequality

Consider first the case δ is Riemann integrable, the mean is µ = 0, and k = 1 so the
basic inequality becomes

∫ σ

−σ

δ(ω) dω ≥ 0.

Of course this is vacuously true. In fact, for any fixed MDF δ in this class we must
have strict inequality

∫ σ

−σ

δ(ω) dω > 0. (2)
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To see this first note that σ > 0 since otherwise

σ2 =

∫ ∞

−∞

ω2 δ(ω) dω = 0,

which means the non-negative integrand ω2 δ(ω) and hence the function δ(ω) is zero
almost everywhere resulting in the contradiction

1 =

∫ ∞

−∞

δ(ω) dω = 1.

Now, let us call the quantity of interest in (2) the central mass M and assume by
way of contradiction

M =

∫ σ

−σ

δ(ω) dω = 0.

It follows from this assumption that δ is zero almost everywhere on the interval
(−σ, σ). In particular,

σ2 =

∫ −σ

−∞

ω2 δ(ω) dω +

∫ ∞

σ

ω2 δ(ω) dω

< σ2

(
∫ −σ

−∞

δ(ω) dω +

∫ ∞

σ

δ(ω) dω

)

(3)

= σ2

∫ ∞

−∞

δ(ω) dω

= σ2 (4)

which is a contradiction. The strict inequality in (3) deserves some comment. By
virtue of the fact that under the assumption δ(ω) = 0 for |ω| < δ there holds

1 =

∫ −∞

−∞

δ(ω) dω =

∫ −σ

−∞

δ(ω) dω +

∫ ∞

σ

δ(ω) dω,

there is a point, a Lebesgue point, ω∗ with |ω∗| > σ and

δ(ω∗) = lim
rց0

1

2r

∫ ω∗+r

ω∗−r

δ(ω) dω > 0. (5)

In fact the equality involving the limit in (5) holds at almost every point ω∗ ∈ R

and at every Lebesgue point ω∗. This is a (somewhat difficult theorem from measure
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theory). If there is no such ω∗ therefore, then one must have once again δ(ω) = 0 for
almost every ω contradicting (1).

Notice that (5) gives right away
∫ ω∗+r

ω∗−r

ω2δ(ω) dω ≥ (|ω∗| − r)2
∫ ω∗+r

ω∗−r

δ(ω) dω > σ2

∫ ω∗+r

ω∗−r

δ(ω) dω (6)

whenever r < |ω∗| − σ is small enough. In particular fixing r > 0 small enough with
r < |ω∗| − σ, this means

∫ −σ

−∞

ω2 δ(ω) dω +

∫ ∞

σ

ω2 δ(ω) dω (7)

=

∫ −|ω∗|−r

−∞

ω2 δ(ω) dω +

∫ −|ω∗|+r

−|ω∗|−r

ω2 δ(ω) dω +

∫ −σ

−|ω∗|+r

ω2 δ(ω) dω

+

∫ |ω∗|−r

σ

ω2 δ(ω) dω +

∫ |ω∗|+r

|ω∗|−r

ω2 δ(ω) dω +

∫ ∞

|ω∗|−r

ω2 δ(ω) dω

≥ σ2

∫ −|ω∗|−r

−∞

δ(ω) dω +

∫ −|ω∗|+r

−|ω∗|−r

ω2 δ(ω) dω + σ2

∫ −σ

−|ω∗|+r

δ(ω) dω

+ σ2

∫ |ω∗|−r

σ

δ(ω) dω +

∫ |ω∗|+r

|ω∗|−r

ω2 δ(ω) dω + σ2

∫ ∞

|ω∗|−r

δ(ω) dω. (8)

If ω∗ < −σ < 0, then
∫ −|ω∗|+r

−|ω∗|−r

ω2 δ(ω) dω > σ2

∫ ω∗+r

ω∗−r

δ(ω) dω

= σ2

∫ −|ω∗|+r

−|ω∗|−r

δ(ω) dω

by (6), and we can take
∫ |ω∗|+r

|ω∗|−r

ω2 δ(ω) dω ≥ σ2

∫ |ω∗|+r

|ω∗|−r

δ(ω) dω.

Similarly, if ω∗ > σ > 0, then
∫ |ω∗|+r

|ω∗|−r

ω2 δ(ω) dω > σ2

∫ ω∗+r

ω∗−r

δ(ω) dω

= σ2

∫ |ω∗|+r

|ω∗|−r

δ(ω) dω
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by (6), and we can take

∫ −|ω∗|+r

−|ω∗|−r

ω2 δ(ω) dω ≥ σ2

∫ −|ω∗|+r

−|ω∗|−r

δ(ω) dω.

Either way, picking up from (7) and (8) we obtain

∫ −σ

−∞

ω2 δ(ω) dω +

∫ ∞

σ

ω2 δ(ω) dω

> σ2

∫ −|ω∗|−r

−∞

δ(ω) dω + σ2

∫ −|ω∗|+r

−|ω∗|−r

δ(ω) dω + σ2

∫ −σ

−|ω∗|+r

δ(ω) dω

+ σ2

∫ |ω∗|−r

σ

δ(ω) dω + σ2

∫ |ω∗|+r

|ω∗|−r

δ(ω) dω + σ2

∫ ∞

|ω∗|−r

δ(ω) dω.

= σ2

(
∫ −σ

−∞

δ(ω) dω +

∫ ∞

σ

δ(ω) dω

)

as claimed/used in (3).
To summarize, Chebyshev’s inequality in the case k = 1 says that for a Riemann

integrable MDF δ : R → [0,∞) with (well-defined) mean

µ =

∫ ∞

−∞

ω δ(ω) dω = 0

and well-defined variance

σ2 =

∫ ∞

−∞

ω2 δ(ω) dω,

there holds
∫ σ

−σ

δ(ω) dω ≥ 0, (9)

and we have obtained the following assertion:

Theorem 1 Under the assumptions on the MDF just given, there holds σ > 0, and
∫ σ

−σ

δ(ω) dω > 0.

This means the equality in (9) cannot be attained. Thus, it is natural to ask the
question: How close can one come to attaining the equality in (9)? The answer, it
turns out, is that we can come as close as we like.
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2 Initial examples

Theorem 2 Given ǫ > 0, there exists an MDF δ : R → [0,∞) having the following

properties:

(i) δ is Riemann integrable with

∫ ∞

−∞

δ(ω) dω = 1,

(ii) δ is even, i.e., δ(−ω) = δ(ω) for ω ∈ R and the mean

µ =

∫ ∞

−∞

ω δ(ω) dω

is well-defined and therefore zero,

(iii) δ has well-defined finite variance σ > 0, and

for which
∫ σ

−σ

δ(ω) dω < ǫ.

It is of some interest to find an MDF having the properties of Theorem 2 with form as
simple as possible. The simplest family of MDFs I have found with these properties
are given by

δ(ω) = χ[−ǫ/2,ǫ/2](ω) +
1− ǫ

ǫ
χ[−1−ǫ/2,−1](ω) +

1− ǫ

ǫ
χ[1,1+ǫ/2](ω) (10)

for 0 < ǫ ≤ 1/2 as indicated on the left in Figure 1.
A slight variation of of the MDF given in (10) is given by

δ(ω) = χ[1−ǫ/2,1](ω) + χ[1,1+ǫ/2](ω) +
1− ǫ

ǫ
χ[−2,−2−ǫ/2](ω) +

1− ǫ

ǫ
χ[2,2+ǫ/2](ω)

as indicated on the right in Figure 1. The calcuations are slightly more complicated
for this family of MDFs, but the result is essentially the same. These MDFs illustrate
that some variety of measures having the properties required by Theorem 2 is possible.
Both of these families, however, limit to atomic measures with atoms at ±a ∈ R of
measure π({±a}) = 1/2, and the Wikipedia page on Chebyshev’s inequality has a
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Figure 1: MDFs with small central mass.

claim that these atomic measures are essentially the unique probability measures for
which equality is attained.1

It is relatively easy to check that the MDF δ : R → [0,∞) defined in (10) is a
probability measure. We will give the computation of the variance and the central
mass corresponding to one standard deviation.

σ2 = 2

∫ ǫ/2

0

ω2 dω + 2

∫ 1+ǫ/2

1

ω2 1− ǫ

ǫ
dω

=
ǫ3

12
+

2

3

1− ǫ

ǫ

[

(

1 +
ǫ

2

)3

− 1

]

=
ǫ3

12
+

2

3

1− ǫ

ǫ

[

3ǫ

2
+

3ǫ2

4
+

ǫ3

8

]

=
ǫ3

12
+

1− ǫ

12

[

12 + 6ǫ+ ǫ2
]

= 1 +
1

12

[

6ǫ+ ǫ2
]

− 1

12

[

12ǫ+ 6ǫ2
]

= 1− 1

12

(

6ǫ+ 5ǫ2
)

.

Thus, it is obvious that σ2 < 1 and σ < 1. It is also very easily checked that σ2 > ǫ2/4.
This is equivalent to (ǫ+ 3)(ǫ− 2) < 0. Consequently,

ǫ

2
< σ < 1,

1A more general class of measures including atomic measures is of course included in the expo-

sition on the Wikipedia page and consequently a more general form of Chebyshev’s inequality.
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so the central mass is simply M = ǫ, and this can be made arbitrarily small by making
ǫ small.

3 Other examples

Of course, another example much simpler than the one above is the centrally sym-
metric uniform MDF δ = χ[−a,a]/(2a) illustrated in the middle plot in Figure 2. For
this MDF

σ2 =
1

a

a3

3
=

a2

3

and

M =
1√
3
.

Next, we consider more genrally the piecewise affine MDFs indicated in Figure 2.
These are given by

δ(ω) =

(

1

2a
(1−ma2) +m|ω|

)

χ[−a,a](ω)

for −1/a2 ≤ m ≤ 1/a2. The variance is

σ2 = a2
(

1

3
+

ma2

6

)

which it may be observed increases with m, so that

σ

(

− 1

a2

)

=
a√
6
< σ(0) =

a√
3
< σ

(

1

a2

)

=
a√
2

with

σ(m1) < σ(m2) for − 1

a2
≤ m1 < m2 ≤

1

a2
.

The central mass on the other hand, also indicated in Figure 2 for various values of
m, is found to decrease with m, so that among these piecewise affine MDFs with
maximum at ω = 0, there holds

M(m) ≥ M(0) =
1√
3

for m ≤ 0.

This perhaps suggests the following conjecture.
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Figure 2: Piecewise affine MDFs.

4 Conjecture

Conjecture 1 There exists some positive number M0 > 0 for which the following

holds: If δ : R → [0,∞) is an MDF satisfying properties (i), (ii), and (iii) of

Theorem 2 above and the additional condition that

δ(ω1) ≥ δ(ω2) for 0 ≤ ω1 ≤ ω2,

then
∫ σ

−σ

δ(ω) dω ≥ M0.

We could add the assertion that M0 = 1/
√
3, but this is likely incorrect, though I do

not know a counterexample at the moment.

Let us say an MDF having the properties given as hypotheses in Conjecture 1 is
symmetric-monotone.

8



I will first carry out the calculation of the central mass associated with the piece-
wise affine MDFs given above and verify the monotonicity leading to Conjecture 1.
Then I will consider some other examples.

As mentioned above for the piecewise affine MDFs we have

σ =
a√
6

√
2 +ma2 for − 1

a2
≤ m ≤ 1

a2
.

Thus, the central mass is given by

M = 2

∫ σ

0

(

1

2a
(1−ma2) +mω

)

dω

=
1−ma2

a
σ +mσ2

=
1√
6
(1−ma2)

√
2 +ma2 +

ma2

6
(2 +ma2).

Notice we may also write

M = − 1√
6
(2 +ma2)3/2 +

3√
6

√
2 +ma2 +

a2

3
m+

a4

6
m2

so that

dM

dm
= − 3

2
√
6
(2 +ma2)1/2 a2 +

3

2
√
6

a2√
2 +ma2

+
a2

3
+

a4

3
m

=
3a2

2
√
6
√
2 +ma2

(−2 −ma2 + 1) +
a2

3
+

a4

3
m

=
a2

3

(

− 9

2
√
6
√
2 +ma2

(1 +ma2) + 1 + a2m

)

=
a2

3
A(m)

where

A(m) = − 9

2
√
6
√
2 +ma2

(1 +ma2) + 1 + a2m

≤ − 3

2
√
2
(1 +ma2) + 1 + a2m

= a2
(

1− 3

2
√
2

)

m+ 1− 3

2
√
2
.
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Setting

φ(m) = a2
(

1− 3

2
√
2

)

m+ 1− 3

2
√
2
,

we see

φ′(m) = a2
(

1− 3

2
√
2

)

< 0.

It follows that A(m) ≤ φ(m) ≤ φ(−1/a2) = 0 and

dM

dm
≤ 0

with equality only for m = −1/a2. This implies

M(m2) < M(m1) for − 1

a2
≤ m1 < m2 ≤

1

a2
.

In particular,

1√
6
= M

(

1

a2

)

<
1√
3
= M(0) < M(m) ≤ M

(

− 1

a2

)

=
2√
6
− 1

6
=

2
√
6− 1

6

for

− 1

a2
≤ m < 0

as claimed.

Exercise 1 Use mathematical software to plot the, variance, standard deviation, and

central mass corresponding to one standard deviation for the affine MDFs above as a

function of m for

− 1

a2
≤ m ≤ 1

a2
.

Do the functions σ2 and M have any interesting propeties as functions of m?

5 Other examples

Another obvious example to try would be the Gaussian or normal MDF given by

δ(ω) =
1

σ
√
2π

e−
(ω−µ)2

2σ2 .
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In this case one finds

M =

∫ µ+σ

µ−σ

δ(ω) dω
.
= 0.6826895 >

1√
3
.

This is consistent with Conjecture 1.

Exercise 2 Consider the MDF obtained as follows:

(a) For a > 0, let f : R → [0,∞) by

f(ω) =

{

1/a2, |ω| ≤ a
1/ω2, |ω| ≥ a.

Find an appropriate constant c > 0 so that δ(ω) = c f(ω) is a probability MDF.

(b) What happens if you try to test the assertion of Conjecture 1 using the MDF

from part (a) above?

For a > 0, consider g : R → [0,∞) by

g(ω) =

{

e−a2 , ω2 ≤ a

e−ω2
, |ω| ≥ a

as indicated in Figure 3. Notice g is
√
π δ where δ is the normal MDF given above

Figure 3: Exponentially decaying (Gaussian) MDFs.

with mean µ = 0 and standard deviation σ = 1/
√
2. Thus, one may take c with

1

c
=

∫ ∞

−∞

g(ω) dω
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and then δ(ω) = c g(ω) defines a probability MDF. The function g with a = 1/2
is plotted on the left in Figure 3, and the scaled function δ = cg with a = 1.5 is
plotted on the right in Figure 3. In this way, we obtain a one parameter family of
MDFs with δ = c(a) g for a > 0. The value of c = c(a) will, in principle, need to be
calcuated numerically for each a > 0, but in practice, most mathematical software
packages include a “standard” Gaussian error function which may be used to
compute values of c = c(a) as well as σ = σ(a) and M = M(a). If I have calculated
correctly, then

σ(1.5)
.
= 0.639684 and M(1.5)

.
= 0.358367

which is already significantly lower than the conjectured value M0 = 1/
√
3.

Exercise 3 Check the value of M(1.5) reported above, and plot the values of σ(a)
and M(a) for a > 0 in general using the truncated Gaussian MDFs described above.

What is the conclusion concerning Conjecture 1, i.e., what is the lowest value of M
attained among these examples?

If Conjecture 1 still survives Exercise 3 above, then another direction that may
be of interest is the following: Let δ : [−a, a] → [0,∞) satisfy the conditions of the
conjecture with

2

∫ a

0

δ(ω) dω = 1.

Consider the family of MDFs τ : [−a, a] → [0,∞) given by

τ(ω) = (1− t)δ(ω) +
t

2a
. (11)

Exercise 4 Show τ is a symmetric-monotone probability MDF for each fixed value

of t with 0 ≤ t ≤ 1.

Conjecture 2 If M = M(τ) denotes the central mass associated with the convex

combination τ of MDFs given in (11), then

dM

dt
≤ 0 for 0 < t < 1.

If Conjecture 2 holds, then this establishes Conjecture 1 at least for symmetric-
monotone MDFs with statistical range [−a, a] and no (exponential) tails.
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Final comment/project: The only other approach I considered on this topic
was to give a direct proof of Conjecture 1 by going through the standard proof of
the Chebyshev/Markov inequality and attempting to sharpen the estimates using
the symmetric-monotone condition. It seemed like there might have been some way
forward with this, but I certainly didn’t see a way to prove the conjecture.
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