
 CHEBYSHEV’S THEOREM 

 I.  MOTIVATIONS 

 In class, we covered lots of examples where we know that a dataset follows a specific 
 distribution, both in continuous and discrete cases. Sometimes, we do not have this information, 
 yet still want to be able to draw statistical inferences from a dataset without looking at individual 
 values. Also, it’s on the course description online, so you should probably know it! 

 In particular, given the mean and variance of a dataset, we want to predict the probability that a 
 randomly selected sample falls within a specified interval around the mean. Of course, doing 
 this exactly is not possible — what we are after here is a lower bound. 

 II.  DEFINITIONS 

 RANDOM VARIABLE (DEF 1): Given a sample space S, a random variable X is a variable 
 which represents an unknown value in S in accordance with some probability/frequency P(X = 
 x) = f(x), where f is a probability mass or density function S → |R          (Not Stanford University). 

 EXPECTED VALUE OF A RANDOM VARIABLE: The expected value of a random variable X 
 where P(X = x) = f(x) is the weighted average of all possible values of X. In the continuous case, 

 (DEF 2).  𝐸 [ 𝑋 ]   =    
−∞

∞

∫  𝑥𝑓 ( 𝑥 ) 𝑑𝑥 

 Additionally, given a function g(X), the expected value of g(X) is 

 (DEF 3).  𝐸 [ 𝑔 ( 𝑋 )]   =    
−∞

∞

∫  𝑔 ( 𝑥 ) 𝑓 ( 𝑥 ) 𝑑𝑥    

 Definitions may be adapted for discrete random variables with sums over S. 

 VARIANCE OF A RANDOM VARIABLE (Definition 4): The variance of a random variable X~f(x), 
 denoted Var[X] or  , represents the weighted mean euclidean distance between each σ 2 

 datapoint and the mean. In the continuous case, 
 𝑉𝑎𝑟 [ 𝑋 ]   =     𝐸 [( 𝑋    −  𝐸 ( 𝑋 )) 2 

                                             =     𝐸 [ 𝑋 ] 2    −     𝐸 [ 𝑋  2 ]
 by the linearity of expectation — proof is left as an exercise to reader, and follows trivially from 
 expanding definition three for  .  𝑔 ( 𝑥 )   =    ( 𝑋    −     𝐸 ( 𝑋 )) 2 



 III.  CHEBYSHEV’S INEQUALITY (DEF 5) 

 Let X (integrable) be a random variable with finite non-zero variance σ  2  (and finite expected 
 value μ).  [7]  Then for any real number k > 1, 

 .  𝑃 ( |  𝑋    −    µ |    <     𝑘 σ)   ≥     1    −     1 

 𝑘  2 

 PROOF: 

 Let X be a continuous random variable with  and  𝐸 [ 𝑋 ]   =    µ

 .  𝑉𝑎𝑟 [ 𝑋 ] =    σ 2    >     0 

 Claim 1  : For a continuous random variable Y with P(Y = y) = f(y) and finite, positive 
 real number a,  (Markov).  𝑃 ( 𝑌    ≥     𝑎 )   ≤     𝐸 [ 𝑌 ] /  𝑎 

 Proof of claim: 

 𝐸 [ 𝑌 ]   =
−∞

∞

∫  𝑦𝑓 ( 𝑦 ) 𝑑𝑦    

                              ≥
 𝑎 

∞

∫  𝑦𝑓 ( 𝑦 ) 𝑑𝑦    

≥
 𝑎 

∞

∫  𝑎𝑓 ( 𝑦 ) 𝑑𝑦    

                                 =  𝑎 
 𝑎 

∞

∫  𝑓 ( 𝑦 ) 𝑑𝑦    

                                                               =  𝑎    *     𝑃 ( 𝑌    ≥  𝑎 ).    
 Dividing both sides by a yields  .  𝑃 ( 𝑌    ≥     𝑎 )   ≤     𝐸 [ 𝑌 ] /  𝑎 

 Now set  and  . Then  𝑌    =    ( 𝑋    −    µ) 2  𝑎    =     𝑘  2 σ 2 

 𝑃 ( |  𝑋    −    µ |    ≥     𝑘 σ)   =  𝑃 (( 𝑋    −    µ) 2    ≥  𝑘  2 σ 2 )

≤  𝐸 [( 𝑋    −    µ) 2 ]    /     𝑘  2 σ 2 

 / (  ) =    σ 2     𝑘  2 σ 2 

 / (  ). =     1     𝑘  2 

 Subtracting both sides of the inequality from 1, it follows that 
 𝑃 ( |  𝑋    −    µ |    ≤     𝑘 σ)   ≥  1 −     1/  𝑘  2    

 as desired. 

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality#cite_note-7


 IV.  EXAMPLES: 

 1.  Suppose that the mean time spent by students in Dr. John McCuan’s Math 3215 on their 
 homework over the entire semester is 36 hours with variance 2 hours. Using 
 Chebyshev’s inequality, find the strongest lower-bound on the probability that a randomly 
 selected student spends between 32 and 40 hours on their homework. 

 Solution: 
 Let X represent the number of hours that a student takes on their homework. Note SD(X) = 
 sqrt(Var(x)) = sqrt(2). We know 40-36 = 36-32 = 4 = sqrt(2)* 2sqrt(2), so we pick k = 2*sqrt(2). 
 Then P(32 < X < 40) = P(36 - ksqrt(2) < X < 36 + ksqrt(2)) 

 >= 1 - 1/(k^2) 
 = 1 - 1/((2sqrt(2))^2) 
 = 1 - ⅛ =  0  .  875. 

 2.  A variation on a variation of someone who lectured before’s problem: Jeremy and John 
 are competing in a 7 round integration bee. In each round, Jeremy wins with probability 
 .9 and loses with probability 0.1. The first to 4 wins is the victor. 

 a.  Calculate the exact probability that Jeremy wins  the match in between 4 and 6, 
 inclusive, rounds. 

 b.  Calculate a lower-bound for the quantity in (a) using Chebyshev’s theorem 
 c.  Compare them! 

 Solution  :  Let X be the number of rounds that it takes for Jeremy to win. Then with 
 Y = X - 4,  Y~NegativeBinomial(r=4, p=0.9). 

 a)  P(4 <= X <= 6) = P (0 <= Y <= 2) = f(0) + f(1) + f(2) = .656 + .262 + .066 = .997 
 b)  Note that E(Y) = 4(0.1)/(0.9) = 0.444, Var(Y) = 4(0.1)/(0.9*0.9) = .494, so E(X) = 5.444, 

 Var(X) = .494, and SD(X) = .703. 
 Then P(4 <= X <= 6) = P(|X - 5| <= SD(X) * 1/SD(X)) 

 = P(|X - 5| <= SD(X) * 1.422) 
 >= 1 - 1/(1.422^2) 
 = 0.505% 

 c)  The lower bound from Chebyshev’s theorem is pretty bad. 
 i)  Even supposing we double the size of the interval: even then, we have a lower 

 bound of .8722, which is still drastically less than the real answer of 0.99999 



 V.  PROBLEM SET 
 1.  (BERKELEY) Let f(x) =  for x ≥ 1 and 0 otherwise. What bound does Chebyshev’s  5/  𝑥  6 

 inequality give for the probability P(X ≥ 2.5)? For what value of a can we say P(X ≥ a) ≤ 
 15%? 

 2.  Let f(x) be the uniform distribution on 0 ≤ x ≤ 20 and 0 everywhere else. Give a bound 
 using Chebyshev’s for P(4 ≤ X ≤ 16). Calculate the actual probability. How do they 
 compare? 

 3.  (UIUC) The number of items produced in a factory during a week is a random variable 
 with mean 50. a) What can be said about the probability that this week’s production is at 
 least 100? b) If the variance of a week’s production is known to equal 25, can we obtain 
 a better bound for part (a)? 

 4.  Let  where m is an integer more than 2, for x ≥ 1 and 0 everywhere else.  𝑓 ( 𝑥 )   =  𝑚  /  𝑥  𝑚 + 1    
 Give a bound using Chebyshev’s Inequality for P(1 ≤  X ≤  )). ( 𝑚 +  1 ) / ( 𝑚 −  1 

 This might take some thinking. Extends Chebyshev to any interval — based on a 1940 paper 
 that still gives the strongest bounds we know of. 

 5.  CHALLENGE PROBLEM  (  SELBERG, 1940  ):  Suppose  X  is a random variable with mean 
 μ  and variance  σ  2  , and  and  are positive real numbers.  𝑎     𝑏 

 a.  Show that  when  𝑃 (µ   −     𝑎    ≤  𝑋 ≤ µ   +     𝑏 )   ≥  𝑎  2  / ( 𝑎  2 + σ 2 )  𝑎 ( 𝑏 −  𝑎 )   ≥  2 σ 2 

 b.  Show that  when  𝑃 (µ   −     𝑎    ≤  𝑋 ≤ µ   +     𝑏 )   ≥ ( 4  𝑎𝑏    −     4 σ 2 ) / ( 𝑎 +  𝑏 ) 2 

    2  𝑎𝑏 ≥  2 σ 2    ≥  𝑎 ( 𝑏 −  𝑎 )

 c.  Show that  when  𝑃 (µ   −     𝑎    ≤  𝑋 ≤ µ   +     𝑏 )   ≥  0 σ 2    ≥  𝑎𝑏 
 d.  Show that when  , this system of inequalities generated in (a, b, c) reduces  𝑎    =     𝑏 

 to Chebyshev’s inequality. [easier] 
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