CHEBYSHEV'S THEOREM
.  MOTIVATIONS

In class, we covered lots of examples where we know that a dataset follows a specific
distribution, both in continuous and discrete cases. Sometimes, we do not have this information,
yet still want to be able to draw statistical inferences from a dataset without looking at individual
values. Also, it's on the course description online, so you should probably know it!

In particular, given the mean and variance of a dataset, we want to predict the probability that a
randomly selected sample falls within a specified interval around the mean. Of course, doing
this exactly is not possible — what we are after here is a lower bound.

Il. DEFINITIONS

RANDOM VARIABLE (DEF 1): Given a sample space S, a random variable X is a variable
which represents an unknown value in S in accordance with some probability/frequency P(X =
x) = f(x), where f is a probability mass or density function S — |R (Not Stanford University).

EXPECTED VALUE OF A RANDOM VARIABLE: The expected value of a random variable X
where P(X = x) = f(x) is the weighted average of all possible values of X. In the continuous case,

oo

E[X] = [ xf(x)dx (DEF 2).
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Additionally, given a function g(X), the expected value of g(X) is

E[gx)] = [ g()f(x)dx (DEF 3).

Definitions may be adapted for discrete random variables with sums over S.

VARIANCE OF A RANDOM VARIABLE (Definition 4): The variance of a random variable X~f(x),

denoted Var[X] or o , represents the weighted mean euclidean distance between each
datapoint and the mean. In the continuous case,
Var[X] = E[(X — E(X))’
= E[X]° — E[X']
by the linearity of expectation — proof is left as an exercise to reader, and follows trivially from

expanding definition three for g(x) = (X — E(X))Z.



lll. CHEBYSHEV’S INEQUALITY (DEF 5)

Let X (integrable) be a random variable with finite non-zero variance o? (and finite expected

value p).2 Then for any real number k > 1,
1

P(JX — pl < ko) =2 1 — T

PROOF:
Let X be a continuous random variable with E[X] = pand
Var[X] = o’ > 0.

Claim 1: For a continuous random variable Y with P(Y =y) = f(y) and finite, positive

real numbera, P(Y = a) < E[Y]/a (Markov).

Proof of claim:
ElY] = [ yf(dy

> [yf(y)dy
> [ af(y)dy

= af f(y)dy
=a * P(Y = a).
Dividing both sides by ayields P(Y > a) < E[Y]/a.

X — w’anda = k’c". Then
P(X — u| = ko) = P((X — )’ = ko)
< E[(X - w]/Ko’

= o6 /(k'c)

= 1/(k).

NowsetY =

Subtracting both sides of the inequality from 1, it follows that
P(X — o < ko) =1 — 1/k°

as desired.


https://en.wikipedia.org/wiki/Chebyshev%27s_inequality#cite_note-7

IV. EXAMPLES:

1. Suppose that the mean time spent by students in Dr. John McCuan’s Math 3215 on their
homework over the entire semester is 36 hours with variance 2 hours. Using
ChebyshevV’s inequality, find the strongest lower-bound on the probability that a randomly
selected student spends between 32 and 40 hours on their homework.

Solution:
Let X represent the number of hours that a student takes on their homework. Note SD(X) =
sqrt(Var(x)) = sqrt(2). We know 40-36 = 36-32 = 4 = sqrt(2)* 2sqrt(2), so we pick k = 2*sqrt(2).
Then P(32 < X <40) = P(36 - ksqrt(2) < X < 36 + ksqrt(2))
>=1-1/(k"2)
=1-1/((2sqrt(2))*2)
=1-"%=0.875.

2. Avariation on a variation of someone who lectured before’s problem: Jeremy and John
are competing in a 7 round integration bee. In each round, Jeremy wins with probability
.9 and loses with probability 0.1. The first to 4 wins is the victor.
a. Calculate the exact probability that Jeremy wins the match in between 4 and 6,
inclusive, rounds.
b. Calculate a lower-bound for the quantity in (a) using Chebyshev’s theorem
c. Compare them!

Solution: Let X be the number of rounds that it takes for Jeremy to win. Then with
Y = X -4, Y~NegativeBinomial(r=4, p=0.9).
a) P4<=X<=6)=P(0<=Y<=2)=1(0) +f(1) +f(2) = .656 + .262 + .066 = .997
b) Note that E(Y) =4(0.1)/(0.9) = 0.444, Var(Y) = 4(0.1)/(0.9*0.9) = .494, so E(X) = 5.444,
Var(X) = .494, and SD(X) = .703.
Then P(4 <= X <= 6) = P(|]X - 5| <= SD(X) * 1/SD(X))
= P(]X - 5] <= SD(X) * 1.422)
>=1-1/(1.422/2)
=0.505%
c) The lower bound from Chebyshev’s theorem is pretty bad.
i) Even supposing we double the size of the interval: even then, we have a lower
bound of .8722, which is still drastically less than the real answer of 0.99999



V.

1.

PROBLEM SET

(BERKELEY) Let f(x) = 5/x6 for x =2 1 and 0 otherwise. What bound does Chebyshev’s
inequality give for the probability P(X = 2.5)? For what value of a can we say P(X =2 a) <
15%7?

Let f(x) be the uniform distribution on 0 < x < 20 and 0 everywhere else. Give a bound
using Chebyshev’s for P(4 < X < 16). Calculate the actual probability. How do they
compare?

(UIUC) The number of items produced in a factory during a week is a random variable
with mean 50. a) What can be said about the probability that this week’s production is at
least 1007 b) If the variance of a week’s production is known to equal 25, can we obtain
a better bound for part (a)?

Let f(x) = m/xerl where m is an integer more than 2, for x 2 1 and 0 everywhere else.
Give a bound using ChebysheV’s Inequality for P(1 < X< (m + 1)/(m — 1)).

This might take some thinking. Extends Chebyshev to any interval — based on a 1940 paper
that still gives the strongest bounds we know of.
5. CHALLENGE PROBLEM (SELBERG, 1940): Suppose X is a random variable with mean

U and variance 02, and a and b are positive real numbers.
a. Showthat P(u — a <X < pu + b)>a’/(@ + o) whena(b — a) > 20
b. Showthat P(u — a < X < p + b)> (4ab — 4c6°)/(a + b)’ when
2ab = 26° =>alb — a)

c. Showthat P(p — a <X <pu + b= 0 when ¢° > ab
d. Show that when a = b, this system of inequalities generated in (a, b, c) reduces
to Chebyshev’s inequality. [easier]


https://doi.org/10.1080%2F03461238.1940.10404804

