
‭CHEBYSHEV’S THEOREM‬

‭I.‬ ‭MOTIVATIONS‬

‭In class, we covered lots of examples where we know that a dataset follows a specific‬
‭distribution, both in continuous and discrete cases. Sometimes, we do not have this information,‬
‭yet still want to be able to draw statistical inferences from a dataset without looking at individual‬
‭values. Also, it’s on the course description online, so you should probably know it!‬

‭In particular, given the mean and variance of a dataset, we want to predict the probability that a‬
‭randomly selected sample falls within a specified interval around the mean. Of course, doing‬
‭this exactly is not possible — what we are after here is a lower bound.‬

‭II.‬ ‭DEFINITIONS‬

‭RANDOM VARIABLE (DEF 1): Given a sample space S, a random variable X is a variable‬
‭which represents an unknown value in S in accordance with some probability/frequency P(X =‬
‭x) = f(x), where f is a probability mass or density function S → |R          (Not Stanford University).‬

‭EXPECTED VALUE OF A RANDOM VARIABLE: The expected value of a random variable X‬
‭where P(X = x) = f(x) is the weighted average of all possible values of X. In the continuous case,‬

‭(DEF 2).‬‭𝐸‬[‭𝑋‬]‭ ‬ = ‭ ‬
−∞

∞

∫ ‭𝑥𝑓‬(‭𝑥‬)‭𝑑𝑥‬

‭Additionally, given a function g(X), the expected value of g(X) is‬

‭(DEF 3).‬‭𝐸‬[‭𝑔‬(‭𝑋‬)]‭ ‬ = ‭ ‬
−∞

∞

∫ ‭𝑔‬(‭𝑥‬)‭𝑓‬(‭𝑥‬)‭𝑑𝑥‬‭ ‬

‭Definitions may be adapted for discrete random variables with sums over S.‬

‭VARIANCE OF A RANDOM VARIABLE (Definition 4): The variance of a random variable X~f(x),‬
‭denoted Var[X] or‬ ‭, represents the weighted mean euclidean distance between each‬σ‭2‬

‭datapoint and the mean. In the continuous case,‬
‭𝑉𝑎𝑟‬[‭𝑋‬]‭ ‬ = ‭ ‬‭𝐸‬[(‭𝑋‬‭ ‬ − ‭𝐸‬(‭𝑋‬))‭2‬

‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬ = ‭ ‬‭𝐸‬[‭𝑋‬]‭2‬‭ ‬ − ‭ ‬‭𝐸‬[‭𝑋‬‭2‬]
‭by the linearity of expectation — proof is left as an exercise to reader, and follows trivially from‬
‭expanding definition three for‬ ‭.‬‭𝑔‬(‭𝑥‬)‭ ‬ = ‭ ‬(‭𝑋‬‭ ‬ − ‭ ‬‭𝐸‬(‭𝑋‬))‭2‬



‭III.‬ ‭CHEBYSHEV’S INEQUALITY (DEF 5)‬

‭Let X (integrable) be a random variable with finite non-zero variance σ‬‭2‬ ‭(and finite expected‬
‭value μ).‬‭[7]‬ ‭Then for any real number k > 1,‬

‭.‬‭𝑃‬(‭|‬‭𝑋‬‭ ‬ − ‭ ‬µ‭|‬‭ ‬ < ‭ ‬‭𝑘‬σ)‭ ‬ ≥ ‭ ‬‭1‬‭ ‬ − ‭ ‬ ‭1‬

‭𝑘‬‭2‬

‭PROOF:‬

‭Let X be a continuous random variable with‬ ‭and‬‭𝐸‬[‭𝑋‬]‭ ‬ = ‭ ‬µ

‭.‬‭𝑉𝑎𝑟‬[‭𝑋‬] = ‭ ‬σ‭2‬‭ ‬ > ‭ ‬‭0‬

‭Claim 1‬‭: For a continuous random variable Y with P(Y = y) = f(y) and finite, positive‬
‭real number a,‬ ‭(Markov).‬‭𝑃‬(‭𝑌‬‭ ‬ ≥ ‭ ‬‭𝑎‬)‭ ‬ ≤ ‭ ‬‭𝐸‬[‭𝑌‬]‭/‬‭𝑎‬

‭Proof of claim:‬

‭𝐸‬[‭𝑌‬]‭ ‬ =
−∞

∞

∫ ‭𝑦𝑓‬(‭𝑦‬)‭𝑑𝑦‬‭ ‬

‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬ ≥
‭𝑎‬

∞

∫ ‭𝑦𝑓‬(‭𝑦‬)‭𝑑𝑦‬‭ ‬

≥
‭𝑎‬

∞

∫ ‭𝑎𝑓‬(‭𝑦‬)‭𝑑𝑦‬‭ ‬

‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬ = ‭𝑎‬
‭𝑎‬

∞

∫ ‭𝑓‬(‭𝑦‬)‭𝑑𝑦‬‭ ‬

‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬ = ‭𝑎‬‭ ‬ * ‭ ‬‭𝑃‬(‭𝑌‬‭ ‬ ≥ ‭𝑎‬). ‭ ‬
‭Dividing both sides by a yields‬ ‭.‬‭𝑃‬(‭𝑌‬‭ ‬ ≥ ‭ ‬‭𝑎‬)‭ ‬ ≤ ‭ ‬‭𝐸‬[‭𝑌‬]‭/‬‭𝑎‬

‭Now set‬ ‭and‬ ‭. Then‬‭𝑌‬‭ ‬ = ‭ ‬(‭𝑋‬‭ ‬ − ‭ ‬µ)‭2‬ ‭𝑎‬‭ ‬ = ‭ ‬‭𝑘‬‭2‬σ‭2‬

‭𝑃‬(‭|‬‭𝑋‬‭ ‬ − ‭ ‬µ‭|‬‭ ‬ ≥ ‭ ‬‭𝑘‬σ)‭ ‬ = ‭𝑃‬((‭𝑋‬‭ ‬ − ‭ ‬µ)‭2‬‭ ‬ ≥ ‭𝑘‬‭2‬σ‭2‬)

≤ ‭𝐸‬[(‭𝑋‬‭ ‬ − ‭ ‬µ)‭2‬]‭ ‬‭/‬‭ ‬‭𝑘‬‭2‬σ‭2‬

‭/ (‬ ‭)‬= ‭ ‬σ‭2‬ ‭ ‬‭𝑘‬‭2‬σ‭2‬

‭/ (‬ ‭).‬= ‭ ‬‭1‬ ‭ ‬‭𝑘‬‭2‬

‭Subtracting both sides of the inequality from 1, it follows that‬
‭𝑃‬(‭|‬‭𝑋‬‭ ‬ − ‭ ‬µ‭|‬‭ ‬ ≤ ‭ ‬‭𝑘‬σ)‭ ‬ ≥ ‭1‬ − ‭ ‬‭1/‬‭𝑘‬‭2‬‭ ‬

‭as desired.‬

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality#cite_note-7


‭IV.‬ ‭EXAMPLES:‬

‭1.‬ ‭Suppose that the mean time spent by students in Dr. John McCuan’s Math 3215 on their‬
‭homework over the entire semester is 36 hours with variance 2 hours. Using‬
‭Chebyshev’s inequality, find the strongest lower-bound on the probability that a randomly‬
‭selected student spends between 32 and 40 hours on their homework.‬

‭Solution:‬
‭Let X represent the number of hours that a student takes on their homework. Note SD(X) =‬
‭sqrt(Var(x)) = sqrt(2). We know 40-36 = 36-32 = 4 = sqrt(2)* 2sqrt(2), so we pick k = 2*sqrt(2).‬
‭Then P(32 < X < 40) = P(36 - ksqrt(2) < X < 36 + ksqrt(2))‬

‭>= 1 - 1/(k^2)‬
‭= 1 - 1/((2sqrt(2))^2)‬
‭= 1 - ⅛ =‬‭0‬‭.‬‭875.‬

‭2.‬ ‭A variation on a variation of someone who lectured before’s problem: Jeremy and John‬
‭are competing in a 7 round integration bee. In each round, Jeremy wins with probability‬
‭.9 and loses with probability 0.1. The first to 4 wins is the victor.‬

‭a.‬ ‭Calculate the exact probability that Jeremy wins  the match in between 4 and 6,‬
‭inclusive, rounds.‬

‭b.‬ ‭Calculate a lower-bound for the quantity in (a) using Chebyshev’s theorem‬
‭c.‬ ‭Compare them!‬

‭Solution‬‭:‬‭Let X be the number of rounds that it takes for Jeremy to win. Then with‬
‭Y = X - 4,  Y~NegativeBinomial(r=4, p=0.9).‬

‭a)‬ ‭P(4 <= X <= 6) = P (0 <= Y <= 2) = f(0) + f(1) + f(2) = .656 + .262 + .066 = .997‬
‭b)‬ ‭Note that E(Y) = 4(0.1)/(0.9) = 0.444, Var(Y) = 4(0.1)/(0.9*0.9) = .494, so E(X) = 5.444,‬

‭Var(X) = .494, and SD(X) = .703.‬
‭Then P(4 <= X <= 6) = P(|X - 5| <= SD(X) * 1/SD(X))‬

‭= P(|X - 5| <= SD(X) * 1.422)‬
‭>= 1 - 1/(1.422^2)‬
‭= 0.505%‬

‭c)‬ ‭The lower bound from Chebyshev’s theorem is pretty bad.‬
‭i)‬ ‭Even supposing we double the size of the interval: even then, we have a lower‬

‭bound of .8722, which is still drastically less than the real answer of 0.99999‬



‭V.‬ ‭PROBLEM SET‬
‭1.‬ ‭(BERKELEY) Let f(x) =‬ ‭for x ≥ 1 and 0 otherwise. What bound does Chebyshev’s‬‭5/‬‭𝑥‬‭6‬

‭inequality give for the probability P(X ≥ 2.5)? For what value of a can we say P(X ≥ a) ≤‬
‭15%?‬

‭2.‬ ‭Let f(x) be the uniform distribution on 0 ≤ x ≤ 20 and 0 everywhere else. Give a bound‬
‭using Chebyshev’s for P(4 ≤ X ≤ 16). Calculate the actual probability. How do they‬
‭compare?‬

‭3.‬ ‭(UIUC) The number of items produced in a factory during a week is a random variable‬
‭with mean 50. a) What can be said about the probability that this week’s production is at‬
‭least 100? b) If the variance of a week’s production is known to equal 25, can we obtain‬
‭a better bound for part (a)?‬

‭4.‬ ‭Let‬ ‭where m is an integer more than 2, for x ≥ 1 and 0 everywhere else.‬‭𝑓‬(‭𝑥‬)‭ ‬ = ‭𝑚‬‭/‬‭𝑥‬‭𝑚‬+‭1‬‭ ‬
‭Give a bound using Chebyshev’s Inequality for P(1 ≤  X ≤‬ ‭)).‬(‭𝑚‬ + ‭1‬)‭/‬(‭𝑚‬ − ‭1‬

‭This might take some thinking. Extends Chebyshev to any interval — based on a 1940 paper‬
‭that still gives the strongest bounds we know of.‬

‭5.‬ ‭CHALLENGE PROBLEM‬‭(‬‭SELBERG, 1940‬‭):‬‭Suppose‬‭X‬‭is a random variable with mean‬
‭μ‬‭and variance‬‭σ‬‭2‬‭, and‬ ‭and‬ ‭are positive real numbers.‬‭𝑎‬ ‭ ‬‭𝑏‬

‭a.‬ ‭Show that‬ ‭when‬‭𝑃‬(µ‭ ‬ − ‭ ‬‭𝑎‬‭ ‬ ≤ ‭𝑋‬ ≤ µ‭ ‬ + ‭ ‬‭𝑏‬)‭ ‬≥ ‭𝑎‬‭2‬‭/‬(‭𝑎‬‭2‬ + σ‭2‬) ‭𝑎‬(‭𝑏‬ − ‭𝑎‬)‭ ‬ ≥ ‭2‬σ‭2‬

‭b.‬ ‭Show that‬ ‭when‬‭𝑃‬(µ‭ ‬ − ‭ ‬‭𝑎‬‭ ‬ ≤ ‭𝑋‬ ≤ µ‭ ‬ + ‭ ‬‭𝑏‬)‭ ‬≥ (‭4‬‭𝑎𝑏‬‭ ‬ − ‭ ‬‭4‬σ‭2‬)‭/‬(‭𝑎‬ + ‭𝑏‬)‭2‬

‭ ‬‭2‬‭𝑎𝑏‬ ≥ ‭2‬σ‭2‬‭ ‬ ≥ ‭𝑎‬(‭𝑏‬ − ‭𝑎‬)

‭c.‬ ‭Show that‬ ‭when‬‭𝑃‬(µ‭ ‬ − ‭ ‬‭𝑎‬‭ ‬ ≤ ‭𝑋‬ ≤ µ‭ ‬ + ‭ ‬‭𝑏‬)‭ ‬≥ ‭0‬ σ‭2‬‭ ‬ ≥ ‭𝑎𝑏‬
‭d.‬ ‭Show that when‬ ‭, this system of inequalities generated in (a, b, c) reduces‬‭𝑎‬‭ ‬ = ‭ ‬‭𝑏‬

‭to Chebyshev’s inequality. [easier]‬
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