1. (Chapter 2: classification and solution of an ODE)

Here is an ordinary differential equation for a function y = y(x):

$$y' = \frac{(x-1)y^5}{x^2(2y^3 - y)}.$$

(a) (10 points) Classify the ODE. (You should specify at least three things.)

(b) (10 points) Solve the ODE.

Solution:

- (a) separable, first order, nonlinear, nonautonomous, exact (three points each for correct answers and one free point)
- (b)

$$(2y^{-2} - y^{-4})y' = x^{-1} - x^{-2}.$$

$$-\frac{2}{y} + \frac{1}{3y^3} = \ln|x| + \frac{1}{x} + c$$

where c is a constant and y is given implicitly.

|--|

2. (Chapter 2: classification and solution of an IVP)

Here is an initial value problem for a function y = y(t):

$$y' = 2ty + 3t^2e^{t^2}, y(0) = 5.$$

(a) (10 points) Classify the ODE in the IVP. (You should specify at least three things.)

(b) (10 points) Solve the IVP.

Solution:

- (a) first order, linear, nonhomogeneous, nonautonomous (three points each for correct answers and one free point)
- (b)

$$e^{-t^2}y = 5 + t^3.$$

Therefore, we have

$$y = (5 + t^3)e^{t^2}.$$

Name and section:

3. (Section 2.3: applications)

- (a) (10 points) A body cools in a 70 degree room according to Newton's law of cooling. At noon the body is 80 degrees and at 1PM the body is 75 degrees. When was the body 98.6 degrees?
- (b) (10 points) Three tanks, numbered 1, 2 and 3, contain well-mixed ethanol-water mixture. Mixture with concentration γ_j of ethanol flows into tank j at a rate r_j gallons per minute, j = 1, 2, 3. Well mixed liquid flows from tank i to tank j for every $i \neq j$ at a rate e_{ij} and flows out of the system from tank j at a rate f_j . If the initial concentration of liquid in tank j is Γ_j and the initial volume is W_j , write down the conditions on the rates that result in an autonomous system for the amounts of ethanol in each tank.
- (c) (10 points) If the system for the amounts of ethanol in each tank from the previous part only involves two tanks (tank 1 and tank 2) and is autonomous, and $r_1 = f_1 = r$ and $W_1 = W_2 = W$, find the equilibrium point(s) of the system.

Solution:

(a) $T' = c(70 - T), T(0) = 98.6. e^{ct}T = 98.6 + 70e^{ct} - 70.$

$$T(t_1) = 28.6e^{-ct_1} + 70 = 80$$
 (noon).
 $T(t_1 + 1) = 28.6e^{-ct_1 - c} + 70 = 75$.

 $e^c = 2$, so $c = \ln 2$, and $28.6e^{-t_1 \ln 2} = 10$. Thus, $t_1 \ln 2 = \ln 2.86$, and $t_1 = \ln 2.86 / \ln 2$, so the time was about $\ln 2.86 / \ln 2 \approx 1.52$ hours before noon, or at about 10:30 AM. Note: You won't be able to use a calculator on the exam, so your answer will/should be just " $\ln 2.86 / \ln 2$ hours before noon."

(b)

$$r_1 - e_{12} - e_{13} + e_{21} + e_{31} - f_1 = 0$$

$$r_2 - e_{21} - e_{23} + e_{12} + e_{32} - f_2 = 0$$

$$r_3 - e_{31} - e_{32} + e_{13} + e_{23} - f_3 = 0.$$

(c) The system simplifies to

$$\begin{cases} A'_1 = \gamma_1 r_1 - (e_{12} + r_1) A_1 / W + e_{12} A_2 / W, & A_1(0) = \Gamma_1 W \\ A'_2 = \gamma_2 r_2 + e_{12} A_1 / W - (e_{12} - r_2) A_2 / W, & A_2(0) = \Gamma_2 W. \end{cases}$$

So we are interested in solving

$$\begin{cases} (e_{12} + r_1)A_1^* - e_{12}A_2^* = \gamma_1 W r_1 \\ -e_{12}A_1^* + (e_{12} + r_2)A_2^* = \gamma_2 W r_2. \end{cases}$$

Name and section:

By Cramer's rule:

$$A_1^* = W \frac{\gamma_1 r_1 (e_{12} + r_2) + \gamma_2 r_2 e_{12}}{(r_1 + r_2) e_{12} + r_1 r_2} = W \frac{(\gamma_1 r_1 + \gamma_2 r_2) e_{12} + \gamma_1 r_1 r_2}{(r_1 + r_2) e_{12} + r_1 r_2}$$

and

$$A_2^* = W \frac{\gamma_1 r_1 e_{12} + \gamma_2 r_2 (e_{12} + r_1)}{(r_1 + r_2)e_{12} + r_1 r_2} = W \frac{(\gamma_1 r_1 + \gamma_2 r_2)e_{12} + \gamma_2 r_1 r_2)}{(r_1 + r_2)e_{12} + r_1 r_2}.$$

Incidentally, an interesting case is when one has also $r_1 = r_2 = r$. Then the equilibrium levels of ethanol are

$$A_1^* = W \frac{(\gamma_1 + \gamma_2)e_{12} + \gamma_1 r}{2e_{12} + r}$$

and

$$A_2^* = W \frac{(\gamma_1 + \gamma_2)e_{12} + \gamma_2 r}{2e_{12} + r}.$$

Notice that if $\gamma_1 > \gamma_2$, then

$$A_1^* - A_2^* = W \frac{(\gamma_1 - \gamma_2)r}{2e_{12} + r} > 0.$$

- 4. (Autonomous equations and exact equations)
 - (a) (10 points) Draw the phase diagram for the Gompertz equation

$$P' = 3P \ln (6/P).$$

(b) (10 points) Determine if the equation is exact. If it is exact, solve the equation.

$$\frac{x^3}{y^2} + \frac{3}{y} + \frac{3}{4} \left(\frac{x}{y^2} + 4y \right) y' = 0.$$

Solution:

(a) 0 6

Notice that zero is not an equilibrium point here, nor is the interval $(-\infty, 0]$ really any part of the phase space/line. The phase line is the open interval $(0, \infty)$.

(b)

$$\frac{\partial}{\partial x}\frac{3}{4}\left(\frac{x}{y^2} + 4y\right) = \frac{3}{4}\left(\frac{1}{y^2}\right),$$

and

$$\frac{\partial}{\partial} \frac{x^3}{y^2} + \frac{3}{y} = -\frac{2x^3}{y^3} - \frac{3}{y^2}.$$

Since

$$\frac{3}{4} \left(\frac{1}{y^2} \right) \neq -\frac{2x^3}{y^3} - \frac{3}{y^2},$$

the equation is not exact.

5. (Chapter 3: A system of ODEs) Here is a system of ODES.

$$\begin{cases} x' = -13x + 6y + 112 \\ y' = 2x - 2y. \end{cases}$$

- (a) (10 points) Solve the system.
- (b) (10 points) Draw the phase diagram.

Solution:

(a) First we find the equilibrium point(s). We want to find x^* and y^* such that

$$\begin{cases} -13x^* + 6y^* + 112 = 0 \\ 2x^* - 2y^* = 0. \end{cases}$$

Inverting the matrix

$$A = \left(\begin{array}{cc} -13 & 6\\ 2 & -2 \end{array}\right)$$

we get

$$\begin{pmatrix} -13 & 6 \\ 2 & -2 \end{pmatrix}^{-1} = \frac{1}{14} \begin{pmatrix} -2 & -6 \\ -2 & -13 \end{pmatrix}.$$

Therefore,

$$\left(\begin{array}{c} x^* \\ y^* \end{array}\right) = \frac{1}{14} \left(\begin{array}{cc} -2 & -6 \\ -2 & -13 \end{array}\right) \left(\begin{array}{c} -112 \\ 0 \end{array}\right) = \left(\begin{array}{c} 16 \\ 16 \end{array}\right).$$

Next, we consider the associated homogeneous system $\mathbf{x}' = A\mathbf{x}$. The characteristic equation is

$$(-13 - \lambda)(-2 - \lambda) - 12 = \lambda^2 + 15\lambda + 14 = (\lambda + 14)(\lambda + 1) = 0.$$

(It's a stable sink.) $\lambda = -14$:

$$\begin{pmatrix} 1 & 6 \\ 2 & 12 \end{pmatrix}$$
 has null space spanned by $\begin{pmatrix} -6 \\ 1 \end{pmatrix}$.

 $\lambda = -1$:

$$\begin{pmatrix} -12 & 6 \\ 2 & -1 \end{pmatrix}$$
 has null space spanned by $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Therefore, the solution of the homogeneous system is

$$\mathbf{x} = c_1 e^{-14t} \begin{pmatrix} -6 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Since

$$A\mathbf{x}^* = \left(\begin{array}{c} -112\\0 \end{array}\right)$$

we know

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = A\left[\left(\begin{array}{c} x\\ y\end{array}\right) - \left(\begin{array}{c} x^*\\ y^*\end{array}\right)\right].$$

This means

$$\left(\begin{array}{c} x \\ y \end{array}\right) - \left(\begin{array}{c} x^* \\ y^* \end{array}\right)$$

is a solution of the associated homogeneous system, so the general solution of the original problem is

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 e^{-14t} \begin{pmatrix} -6 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} x^* \\ y^* \end{pmatrix} = c_1 e^{-14t} \begin{pmatrix} -6 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 16 \\ 16 \end{pmatrix}.$$

(b) The phase diagram for the associated homogeneous system is

Now, we translate this picture to the equilibrium point:

