Assignment 2 Math 2413

August 20, 2008

- 1. Read bogus $\S2.1$.
- 2. Look at the bogus problems 2.1.1, 3,6,7,10,12,17,18,22,26,35.
- 3. Let $f: [0,1] \to \mathbb{R}$ be a continuous function such that $\int_0^1 f(t)\eta(t)dt = 0$ for all $\eta \in C_c^{\infty}[0,1]$. What can you say about f?

Notes:

- (a) Here we could simply write $f \in C^0[0, 1]$.
- (b) C^{∞} denotes the functions which have derivatives of all orders, both existing and continuous.
- (c) C_c^{∞} denotes the subspace of C^{∞} of the functions with *compact support*. The *support* of a function is the closure of the set of all points at which the function is non-zero. To be *compactly supported* means that the support of the function is compact (i.e., closed and bounded) and is also a subset of the interior of the domain of the function. In this case, it means that $\operatorname{supp}(f) \subset (0, 1)$. In this case, we write $\operatorname{supp}(f) \subset [0, 1]$.
- 4. Find a nonzero function in $C_c^{\infty}[0, 1]$.
- 5. Vocabulary: differentiation under the integral sign, fundamental lemma (of the calculus of variations), C^k , C^{∞} , C_c^{∞} , compact support, closure, closed/open (sets), continuously differentiable (C^1), compactly contained ($\subset \subset$), continuity (review), numerical solution, tangent line (review), slope (review), slope field, difference quotient (review), limit

(review), piecewise linear, step size, Euler's method, round off error, Runge-Kutta method (will understand more fully later).