A Homework Problem
(continued)

Here, | want to explore the IVP in problem 2.6.4 of Brannon and Boyce numerically. Let's start by
illustrating some of the things we’ve already determined without numerics.

g[x_] =Log[-1/(2x)]/x;
a = Plot[{g[x], 2/E}, {x, -5, 0}, AxesOrigin -> {0, 0}]
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ms to indicate what is going on with the slope field pretty well. Next, we find some solutions.

This see

. It ought to go through the maxi-

First the critical solution which satisfies initial condition y(-e/2) = 2/e



slope2.nb | 3

mum of the graph of g and always stay above that grap'h‘othe'rwise:
csoln = NDSolve[{y'[t] ==2t+EA(-ty[t]), Y[-E/2] ==2/E}, v, {t, -4, 2}]

{{y » InterpolatingFunction[{{-4., 2.}}, <>]}}

d = Plot[y[t] /. csoln, {t, -3, 2}, PlotStyle » {Thick, Red}]
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From this, it' s clear that the solution of our IVP will fall under the critial solution at t = 0 and for all time.
It will be defined (presumably) for all time. It will first increase from zero (maybe for t really negative),
then cross the graph of g (this may be hard to see), decrease for a while, then cross the graph of g
again and increase.

soln = NDSolve[{y"'[t] =2t +EA(-ty[t]), y[0] =1}, v, {t, -4, 2}]

{{y - InterpolatingFunction[{{-4., 2.}}, <>]}}
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2}, PlotStyle » {Thick, Green

e = Plot[y[t] /. soln, {t, -3,

4,

Show[b, a, c,
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if we can zoo

window, so let’'s see

and it looks like it crosses the graph of g within our
ction point, which will be a local max for the solution of the IVP.

in and see the interse

Well, there it is,
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Show[a, d, e, PlotRange » {{-2, -1}, {.6, .8}}]
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| guess that captures it pretty well. The green curve will always stay below the red curve (by the exis-
tence and uniqueness theorem).



