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Most of what we have covered so far on sequences and series is probably
a review for most of you, so before we leave the topic altogether, I thought it
would be nice to cover something that will be new to most, if not all, of you.
In fact, what we will cover on power series in two variables is not in your text
SH&E, and that is why I have composed these notes for you. Sometimes,
you may have to compose such notes for yourself from the lecture, but as
that kind of coursework might be new to many of you, I’ll give you a little
help to get started.

Some basic prerequisites for the topic at hand are in the book, and I will
mention some sections to read and problems to work as we go. Even before
you read further here, you should go

read §15.1 in S,H,&E. and work exercises 15.1.2, 6, and 31.

Real valued functions of more than one variable are basic objects in math-
ematical analysis. The first example in Chapter 15 (S,H,&E) is

f(x, y) = xy.

In this case, f : R
2 → R.

Exercise

1. Graph the function f(x, y) = xy using x, y, z-coordinate axes in 3-D
space. Hint: Consider the subsets of R

2 where x = 0, where y = 0, and
where x = y.

We will restrict our attention to two (independent) variables in these
notes and describe a natural version of Taylor series that works for these
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functions. These series also have a center where they always converge to the
function value. Let the center be (x0, y0) ∈ R

2. Then the series has the basic
(polynomial) form

∑

aij(x − x0)
i(y − y0)

j

where the indices i and j run (independently) from 0 to ∞. For example the
terms up to order 2 are

a00+a10(x − x0) + a01(y − y0)

+ a20(x − x0)
2 + a11(x − x0)(y − y0) + a02(y − y0)

2. (1)

This is the order 2 Taylor polynomial P2(x, y). In Calculus III, one learns to
understand the behavior of all such “quadratic polynomials” in two variables.

Exercises

2. Write down the general form of the order 3 terms in the Taylor series.
How many order 4 terms are there?

3. Rewrite the order 2 Taylor polynomial (given in (1)) in the form

P2(x, y) =
2

∑

i=0

qi(y)(x− x0)
i

and in the form

P2(x, y) =
2

∑

j=0

qj(x)(y − y0)
j .

In order to make our recipe for writing down a Taylor series complete, we
need to explain how to get the coefficients aij in terms of the function f . As
before, the zero order (constant) term is just a00 = f(x0, y0) and the other
terms involve derivatives of the function f evaluated at (x0, y0) and factorials.
After the first few, the pattern will be clear. Let us use as an example the
function f(x, y) = tan−1(y/x) at the center point (x0, y0) = (1, 1).

To get a10, let us break the procedure up into two steps:

1. treat y as a constant, and differentiate with respect to x. This is called
“taking the partial derivative w.r.t. x,” and if you wish to read more
about it, you can look at S,H,&E §15.4.
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2. Plug the center point (x0, y0) into the resulting expression.

The expression (partial derivative w.r.t. x) you find in the first step is denoted
by fx or ∂f

∂x
and may also simply be called the “first x-partial,” the “first

homogeneous x-partial,” or simply the “x-partial.” For example if f(x, y) =
tan−1(y/x), then the x-partial is given by

∂f

∂x
=

1

1 + (y/x)2

(

−
y

x2

)

= −
y

x2 + y2
.

In step 2, we evaluate this expression at (x0, y0) = (1, 1) to obtain

a10 = −
1

2
=

−1/2

1! 0!

Thus, the coefficient of the first order linear term in x is a10 = −1/2.
To get a01, first treat x as a constant and differentiate w.r.t. y; i.e., take

the y-partial. Second plug in (x0, y0).

Exercise

4. Compute a01 for f(x, y) = tan−1(y/x) at (x0, y0) = (1, 1).

Solution:
∂f

∂y
=

1/x

1 + (y/x)2
=

x

x2 + y2
→

1

2
.

a01 =
1

2
=

1/2

0!1!
. �

In order to get the 2nd order coefficients, we take more derivatives and
introduce nontrivial factorials. Here is how to compute a20 in three steps:

1. Differentiate twice w.r.t. x.

2. Plug in (x0.y0).

3. Divide by 2!0! = 2. (Note: This is a product of factorials i!j!. The i
is the power of x − x0 in this term (which is the same number as the
number of x-partials you are taking), and the j is the power of y − y0

in this term (or the number of y-partials you are taking).
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The second partial derivative computed in step 1 (which is a function) is
denoted by fxx or

∂2f

∂x2
.

It is the second order homogeneous x-partial. After evaluation (plugging in),
we can denote the resulting number by

fxx(x0, y0) or
∂2f

∂x2
(x0, y0).

Thus after completing the three steps, we find

a20 =
1

2!0!

∂2f

∂x2
(x0, y0),

And for our example f(x, y) = tan−1(y/x),

∂2f

∂x2
=

∂

∂x

(

−
y

x2 + y2

)

=
2xy

(x2 + y2)2

∂2f(1, 1)

∂x2
=

1

2
.

The coefficient of the xy-term, a11, is calculated by taking one derivative
w.r.t. x, then one w.r.t. y, plugging in (x0, y0) and dividing by 1!1!. This
second partial is denoted fxy or ∂2f/∂y∂x and

a11 = fxy(x0, y0) =
∂

∂y

(

∂f

∂x

)

∣

∣

(x0,y0)

=
∂2f

∂y∂x
(x0, y0).

Note: The derivative appearing here is a second order mixed partial. It is not
homogeneous because we are differentiating with respect to both x and y; it
usually doesn’t matter which partial you compute first (see S,H,&E §15.6 for
more details).

For example, with f(x, y) = tan−1(y/x),

∂2f

∂x∂y
=

∂

∂y

(

−
y

x2 + y2

)

= −
1

x2 + y2
+

2y2

(x2 + y2)2

=
y2 − x2

x2 + y2
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and

∂

∂x

(

x

x2 + y2

)

=
1

x2 + y2
−

2x2

x2 + y2

=
y2 − x2

x2 + y2
.

You should be able to see the pattern by now.

Exercises

5. Compute the coefficient of (y − 1)2

a02 =
1

0!2!

∂2f

∂y2
(1, 1)

when f(x, y) = tan−1(y/x). What is the full second order Taylor poly-
nomial in this case?

6. Find the second order Taylor expansion of f(x, y) = x2 cos y + y2 sin x
at (x0, y0) = (0, 0).

7. Extra 15.6.4, 15.4.57

The general formula is given by

aij =
1

i!j!

∂i+jf

∂xi∂yj
(x0, y0)

where ∂i+jf

∂xi∂yj means to differentiate i times w.r.t. x and then j times w.r.t.

y. (The order in which you compute these partial derivatives usually doesn’t
matter.)

Exercise

8. Compute the Taylor Series for f(x, y) = ln(xy) at (x0, y0) = (1, 1).
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Adding, Scaling, and Multiplying Vectors

If (a, b) and (c, d) are points in R
2, i.e., vectors, then we can add them

componentwise:
(a, b) + (c, d) = (a + c, b + d).

It is also possible to scale a vector by a constant α ∈ R:

α(x, y) = (αx, αy).

The dot product of two vectors (§13.3) is defined by

(a, b) · (c, d) = ac + bd.

Notice that (a, b), (c, d) ∈ R
2, but (a, b) · (c, d) ∈ R.

For a function f of two variables x and y, define the (full) derivative of
f to be the vector Df whose entries are the two first partials of f . That is
Df = (fx, fy).

In the exercise below, we use this definition and also denote the point/vector
(x, y) by x and the point (x0, y0) by x0

Exercise

9. Show that the first order Taylor polynomial is given by

P1(x) = f(x0) + Df(x0) · (x − x0).

Compare this to the Taylor polynomial P1(x) for a function of one
variable.

Matrices; Multiplying Matrices and Vectors

A 2 × 2 matrix is an array of four numbers:

M =

(

a b
c d

)

.

If M is the matrix given above and x is the vector (x, y), which we will write
as a column vector

x =

(

x
y

)

,
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then

Mx =

(

a b
c d

) (

x
y

)

=

(

ax + by
cx + dy

)

Note that Mx ∈ R
2. At present, we are ignoring the distinction between

row vectors (x, y) and column vectors

(

x
y

)

; sometimes one pays attention to

the difference, but we can easily see what is going on now. An example of a
matrix is given by the Hessian which is the array of second partials:

D2f =

(

fxx fxy

fxy fyy

)

.

The entries fxx and fyy are called the diagonal entries. Notice that the off
diagonal entries should be fxy and fyx. (Can you explain?)

Exercise

10. Show that

P2(x) = f(x0) + Df(x0) · (x − x0) +
1

2
D2f(x0)(x − x0) · (x − x0).

Compare this to P2(x).
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